uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Ecological Botany.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Ecological Botany.
Show others and affiliations
2009 (English)In: Oecologia, ISSN 0029-8549, E-ISSN 1432-1939, Vol. 159, no 4, 705-715 p.Article in journal (Refereed) Published
Abstract [en]

Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.28 g N m(-2) year(-1) in the north, to 1.49 g N m(-2) year(-1) in the south. The maximum photosynthetic rate (NPmax) increased southwards, and was mainly explained by tissue N concentration, secondly by allocation of N to the   photosynthesis, and to a lesser degree by modified photosystem II activity (variable fluorescence/maximum fluorescence yield). Although climatic factors may have contributed, these results were most likely attributable to an increase in N deposition southwards. For S. fuscum, photosynthetic rate continued to increase up to a deposition level of 1.49 g N m(-2) year(-1), but for S. balticum it seemed to level out at 1.14 g N m(-2) year(-1). The results for S. balticum suggested that transplants from different origin (with low or intermediate N   deposition) respond differently to high N deposition. This indicates that Sphagnum species may be able to adapt or physiologically adjust to high N deposition. Our results also suggest that S. balticum might be more sensitive to N deposition than S. fuscum. Surprisingly, NPmax was not (S. balticum), or only weakly (S. fuscum) correlated with biomass production, indicating that production is to a great extent is governed by factors other than the photosynthetic capacity.

Place, publisher, year, edition, pages
2009. Vol. 159, no 4, 705-715 p.
Keyword [en]
Chlorophyll fluorescence, Chlorophyll, Carbon dioxide exchange, Photosynthesis, Peatlands
National Category
Biological Sciences
URN: urn:nbn:se:uu:diva-120352DOI: 10.1007/s00442-008-1261-1ISI: 000264103800003OAI: oai:DiVA.org:uu-120352DiVA: diva2:303190
Available from: 2010-03-11 Created: 2010-03-11 Last updated: 2013-12-09Bibliographically approved
In thesis
1. Peatland Bryophytes in a Changing Environment: Ecophysiological Traits and Ecosystem Function
Open this publication in new window or tab >>Peatland Bryophytes in a Changing Environment: Ecophysiological Traits and Ecosystem Function
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Peatlands are peat forming ecosystems in which not fully decomposed plant material builds up the soil. The sequestration of carbon into peat is mainly associated with the bryophyte genus Sphagnum (peat mosses), which dominate and literally form most peatlands. The responses of Sphagnum to environmental change help us to understand peatland development and function and to predict future changes in a rapidly changing world. In this thesis, the overarching aim was to use ecophysiological traits to investigate mechanisms behind the response of Sphagnum to elevated N deposition, and, processes connected to ecosystem shift and ecosystem function of peatlands.

Regarding elevated N deposition, three experiments were performed at different scales (country-wide to greenhouse). Independent of scale and species, apical tissue N concentration increased with increasing N input until N saturation was reached. Maximum photosynthetic rate, a trait evaluating photosynthetic capacity, increased with N input and could be well predicted by tissue N concentration. Thus, the physiological responses of Sphagnum to N deposition are often positive and I found no evidence of toxic effects. Production did, however, not increase with N input, and results of the N:P ratio suggested that P limitation, and possibly other elements, might hamper growth under high N input. The effect of P limitation was, in contrast to current view, most pronounced in fast growing species indicating species specific responses to nutrient imbalance.

I explored the puzzling, but historically frequently occurring, rich fen to bog ecosystem shift; a shift from a species-rich ecosystem dominated by brown mosses, to a species-poor one with greater carbon storage that is Sphagnum-dominated. The bog-dwelling species of Sphagnum grew well, to our surprise, when in contact with rich fen water but was not a strong competitor compared to rich fen Sphagnum species. If submerged under rich fen water (high pH), the bog Sphagnum species died while rich fen species of Sphagnum were unaffected. These results show that differences in two physiological traits (growth rate and tolerance to flooding) among species, can explain when a peatland ecosystem shift might occur.

In the last study, the function of peatlands was related to trade-offs between traits and allometric scaling in Sphagnum. Results suggested that growth strategies are determined by the distribution of Sphagnum relative to the water table in order to minimize periods with suboptimal hydration. Allometric analyses stressed the importance of resource allocation among and within shoots (apical part vs. stem), although the allocation patterns in Sphagnum were not always consistent with those of vascular plants. Interestingly, data indicated a trade-off between photosynthetic rate and decomposition rate among Sphagnum species.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 39 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 889
allometric scaling, chlorophyll fluorescence, competition, decomposition, flooding, mire, N concentration, nitrogen deposition, photosynthesis, succession, stoichiometry
National Category
Research subject
Ecological Botany
urn:nbn:se:uu:diva-165138 (URN)978-91-554-8249-7 (ISBN)
Public defence
2012-02-17, Zootissalen, EBC, Villavägen 9, Uppsala, 10:00 (English)
Available from: 2012-01-27 Created: 2012-01-03 Last updated: 2012-02-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rydin, Håkan
By organisation
Ecological Botany
In the same journal
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 290 hits
ReferencesLink to record
Permanent link

Direct link