uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigation of boundary conditions for biomimetic HA deposition on titanium oxide surfaces
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
2009 (English)In: Journal of materials science. Materials in medicine, ISSN 0957-4530, E-ISSN 1573-4838, Vol. 20, no 7, 1401-1408 p.Article in journal (Refereed) Published
Abstract [en]

To improve the clinical outcome of metal implants, i.e. earlier loading and reduction of the incidence of revision surgery, better bone bonding ability is wanted. One method to achieve this is to change the surface chemistry to give a surface that facilitates bone bonding in vivo, i.e. a bioactive surface. Crystalline titanium oxide has recently been proven to be bioactive in vitro and is an interesting option to the more common hydroxylapatite (HA) coatings on implants. A materials possible in vitro bioactivity is tested through soaking in simulated body fluid and studies of possible HA formation on the surface. For bioactive materials, the formed HA layer can also be used as a coating. The aim of the current paper is to investigate some boundary conditions for HA formation on crystalline titanium oxide surfaces regarding influence from coating thickness, soaking time and soaking temperature. The influence from soaking time and temperature on the HA growth were investigated on oxidised Ti samples, (24 h at 800°C) resulting in a rutile surface structure. The oxidised samples were tested at three temperatures (4, 37 and 65°C) and four times (1 h, 1 day, 1 week and 4 weeks). The influence from titanium coating thickness on the HA growth was investigated via depositing thin films of crystalline titanium dioxide on Ti plates using a reactive magnetron sputtering process. Four different PVD runs with coating thicknesses between 19 and 74 nm were tested. The soaking temperature had an effect on the HA formation and growth on both rutile surfaces and native oxide on Ti substrates. Higher temperatures lead to easier formation of HA. It was even possible, at 65°C, to grow HA on native titanium oxide from soaking in PBS. The coating quality was better for HA formed at 65°C compared to 37°C. All PVD-coatings showed HA growth after 1 week in PBS at 37°C, thus even very thin coatings of crystalline titanium oxide coatings are bioactive.

Place, publisher, year, edition, pages
2009. Vol. 20, no 7, 1401-1408 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-120445DOI: 10.1007/s10856-009-3709-1ISI: 000268103200002OAI: oai:DiVA.org:uu-120445DiVA: diva2:303352
Available from: 2010-03-12 Created: 2010-03-12 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Wiklund, UrbanEngqvist, Håkan

Search in DiVA

By author/editor
Wiklund, UrbanEngqvist, Håkan
By organisation
Applied Materials Sciences
In the same journal
Journal of materials science. Materials in medicine
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 777 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf