uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
The influence of climate, hydrology and permafrost on Holocene peat accumulation at 3500 m on the eastern Qinghai-Tibetan plateau
Show others and affiliations
2009 (English)In: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 28, no 27-28, 3303-3314 p.Article in journal (Refereed) Published
Abstract [en]

Peatland of the eastern Qinghai–Tibetan Plateau lies at the convergence of the East Asian and Indian monsoon systems in eastern Asia. To understand the evolution of this peatland and its potential to provide new insights into the Holocene evolution of the East Asian monsoon a 6 m peat core was collected from the undisturbed central part of a peat deposit near Hongyuan. The age-depth profile was determined using 16 14C-AMS age dates, the peat analysed for a range of environmental variables including carbon, nitrogen and hydrogen concentration, bulk density, δ13C and the associated spring water analysed for hydrogen and oxygen isotopes. The age-depth profile of the recovered peat sequence covers the period from 9.6 to 0.3 kyr BP and is linear indicating that the conditions governing productivity and decay varied little over the Holocene. Using changes in carbon density, organic carbon content and its δ13C, cold dry periods of permafrost characterised by low density and impeded surface drainage were identified. The low δ18O and δD values of the spring water emanating around the peat deposit, down to −13.8 and −102‰ (VSMOW), respectively, with an inverse relationship between electrical conductivity and isotopic composition indicate precipitation under colder and drier conditions relative to the present day. In view of the current annual mean air temperature of 1 °C this suggests conditions in the past have been conducive to permafrost. Inferred periods of permafrost correspond to independently recognised cold periods in other Holocene records from across China at 8.6, 8.2–7.8, 5.6–4.2, 3.1 and 1.8–1.5 kyr BP. The transition to a cold dry climate appears to be more rapid than the subsequent recovery and cold dry periods at Hongyuan are of longer duration than equivalent cold dry periods over central and eastern China. Light–dark banding peat on a scale of 15–30 years from 9.6 to 5.5 kyr BP may indicate a strong influence of decadal oscillations possibly the Pacific Decadal Oscillation and a potential link between near simultaneous climatic changes in the northwest Pacific, ENSO, movement of the Intertropical Convergence Zone and the East Asian Monsoon.

Place, publisher, year, edition, pages
2009. Vol. 28, no 27-28, 3303-3314 p.
National Category
Subatomic Physics Earth and Related Environmental Sciences Engineering and Technology
Research subject
Ion Physics
URN: urn:nbn:se:uu:diva-122100DOI: 10.1016/j.quascirev.2009.09.006ISI: 000273195700021OAI: oai:DiVA.org:uu-122100DiVA: diva2:308437
Available from: 2010-04-06 Created: 2010-04-06 Last updated: 2016-04-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Possnert, Göran
By organisation
Ion PhysicsTandem Laboratory
In the same journal
Quaternary Science Reviews
Subatomic PhysicsEarth and Related Environmental SciencesEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 193 hits
ReferencesLink to record
Permanent link

Direct link