uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling subpopulations with the $MIXTURE subroutine in NONMEM: finding the individual probability of belonging to a subpopulation for the use in model analysis and improved decision making
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. (Farmakometri)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. (Farmakometri)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. (​Pharmacometrics Research Group)ORCID iD: 0000-0002-2676-5912
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. (Farmakometri)
2009 (English)In: AAPS Journal, ISSN 1550-7416, Vol. 11, no 1, 148-154 p.Article in journal (Refereed) Published
Abstract [en]

In nonlinear mixed effects modeling using NONMEM, mixture models can be used for multimodal distributions of parameters. The fraction of individuals belonging to each of the subpopulations can be estimated, and the most probable subpopulation for each patient is output (MIXEST(k)). The objective function value (OFV) that is minimized is the sum of the OFVs for each patient (OFV(i)), which in turn is the sum across the k subpopulations (OFV(i,k)). The OFV(i,k) values can be used together with the total probability in the population of belonging to subpopulation k to calculate the individual probability of belonging to the subpopulation (IP(k)). Our objective was to explore the information gained by using IP(k) instead of or in addition to MIXEST(k) in the analysis of mixture models. Two real data sets described previously by mixture models as well as simulations were used to explore the use of IP(k) and the precision of individual parameter values based on IP(k) and MIXEST(k). For both real data-based mixture models, a substantial fraction (11% and 26%) of the patients had IP(k) values not close to 0 or 1 (IP(k) between 0.25 and 0.75). Simulations of eight different scenarios showed that individual parameter estimates based on MIXEST were less precise than those based on IP(k), as the root mean squared error was reduced for IP(k) in all scenarios. A probability estimate such as IP(k) provides more detailed information about each individual than the discrete MIXEST(k). Individual parameter estimates based on IP(k) should be preferable whenever individual parameter estimates are to be used as study output or for simulations.

Place, publisher, year, edition, pages
Springer , 2009. Vol. 11, no 1, 148-154 p.
Keyword [en]
mixture, NONMEM, pharmacometrics, population modeling, subpopulation
National Category
Pharmaceutical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-122157DOI: 10.1208/s12248-009-9093-4ISI: 000264880800019PubMedID: 19277871OAI: oai:DiVA.org:uu-122157DiVA: diva2:308512
Available from: 2010-04-06 Created: 2010-04-06 Last updated: 2015-02-12

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Karlsson, Kristin C.Savić, Radojka M.Hooker, Andrew C.Karlsson, Mats O

Search in DiVA

By author/editor
Karlsson, Kristin C.Savić, Radojka M.Hooker, Andrew C.Karlsson, Mats O
By organisation
Department of Pharmaceutical Biosciences
In the same journal
AAPS Journal
Pharmaceutical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 379 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf