uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A population pharmacokinetic model of gabapentin developed in nonparametric adaptive grid and nonlinear mixed effects modeling
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. (Farmakometri)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Show others and affiliations
2009 (English)In: Therapeutic Drug Monitoring, ISSN 0163-4356, E-ISSN 1536-3694, Vol. 31, no 1, 86-94 p.Article in journal (Refereed) Published
Abstract [en]

Gabapentin is used in analgesic treatment of neuropathic pain, and large interindividual variation has been observed in the pharmacokinetics (PK) of the drug. The aim of this study was to develop a population PK model for gabapentin appropriate for monitoring patients with neuropathic pain and for individualizing their dose regimens. Steady-state serum concentrations of gabapentin, distributed over a dosage interval, were obtained from 16 adult patients. Data were analyzed with an iterative 2-stage Bayesian and a nonparametric adaptive grid algorithm (NPAG) (USC*PACK) and with nonlinear mixed effects modeling (NONMEM). Compartmental population models for gabapentin PK were developed in NPAG and NONMEM using creatinine clearance and body weight as covariates. Bioavailability was included in the models as a function of dose by using a hyperbolic function derived from data previously reported in the literature. The mean population parameter estimates from the final NPAG model predicted individual serum concentrations reasonably well. The models developed in NONMEM provided additional information about the relevance of the various possible covariates and also allowed for further evaluation by simulation from the model. The population PK model may be utilized in the MM-USCPACK monitoring software (MM: multiple model dosage design) for predicting and achieving individually optimized steady-state serum concentrations of gabapentin.

Place, publisher, year, edition, pages
2009. Vol. 31, no 1, 86-94 p.
Keyword [en]
gabapentin, neuropathic pain, NPAG, NONMEM, therapeutic drug monitoring
National Category
Pharmaceutical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-122161DOI: 10.1097/FTD.0b013e318194767dISI: 000262879000010PubMedID: 19077930OAI: oai:DiVA.org:uu-122161DiVA: diva2:308516
Available from: 2010-04-06 Created: 2010-04-06 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Karlsson, Kristin C.Karlsson, Mats O.

Search in DiVA

By author/editor
Karlsson, Kristin C.Karlsson, Mats O.
By organisation
Department of Pharmaceutical Biosciences
In the same journal
Therapeutic Drug Monitoring
Pharmaceutical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 405 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf