uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A combined Markov-chain and bottom-up approach to modelling of domestic lighting demand
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics. (Built Environment Energy Systems Group (BEESG))
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
2009 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 41, no 10, 1001-1012 p.Article in journal (Refereed) Published
Abstract [en]

Detailed simulations of distributed generation in residential areas   have prompted the need for improved models of domestic electricity   demand that are able to reproduce important features of real household   loads. The high share and temporal variability of the lighting demand   make it of special interest, in particular when the models are to be   used in simulations of distributed photovoltaics (PV), which to a high   degree is negatively correlated with the lighting demand. In this   paper, a stochastic bottom-up model based on domestic occupancy   patterns and data on daylight availability is presented. A threestate   non-homogeneous Markov chain is used for generation of occupancy   patterns and a conversion model transforms occupancy patterns to   lighting demand, with respect to the daylight level. Markovchain   transition probabilities are determined from a detailed set of time-use   (TU) data in Swedish households and the parameters in the   occupancy-to-lighting conversion model are adjusted to make the   resulting load curves fit recent measurements on aggregate population   level. The performance of the model is analysed by comparison of   simulated demand to measured lighting demand. It is concluded that for   both individual households and aggregate demand, all relevant features   of measured demand are realistically reproduced.

Place, publisher, year, edition, pages
2009. Vol. 41, no 10, 1001-1012 p.
Keyword [en]
Domestic lighting, Markov chain, Bottom-up, Load model, Occupancy
National Category
Engineering and Technology
Research subject
Solid State Physics
Identifiers
URN: urn:nbn:se:uu:diva-122405DOI: 10.1016/j.enbuild.2009.05.002ISI: 000270076900001OAI: oai:DiVA.org:uu-122405DiVA: diva2:310022
Available from: 2010-04-12 Created: 2010-04-12 Last updated: 2017-12-12Bibliographically approved
In thesis
1. System Studies and Simulations of Distributed Photovoltaics in Sweden
Open this publication in new window or tab >>System Studies and Simulations of Distributed Photovoltaics in Sweden
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Grid-connected photovoltaic (PV) capacity is increasing worldwide, mainly due to extensive subsidy schemes for renewable electricity generation. A majority of newly installed systems are distributed small-scale systems located in distribution grids, often at residential customers. Recent developments suggest that such distributed PV generation (PV-DG) could gain more interest in Sweden in the near future. With prospects of decreasing system prices, an extensive integration does not seem impossible.

In this PhD thesis the opportunities for utilisation of on-site PV generation and the consequences of a widespread introduction are studied. The specific aims are to improve modelling of residential electricity demand to provide a basis for simulations, to study load matching and grid interaction of on-site PV and to add to the understanding of power system impacts.

Time-use data (TUD) provided a realistic basis for residential load modelling. Both a deterministic and a stochastic approach for generating different types of end-use profiles were developed. The models are capable of realistically reproducing important electric load properties such as diurnal and seasonal variations, short time-scale fluctuations and random load coincidence.

The load matching capability of residential on-site PV was found to be low by default but possible to improve to some extent by different measures. Net metering reduces the economic effects of the mismatch and has a decisive impact on the production value and on the system sizes that are reasonable to install for a small-scale producer.

Impacts of large-scale PV-DG on low-voltage (LV) grids and on the national power system were studied. Power flow studies showed that voltage rise in LV grids is not a limiting factor for integration of PV-DG. Variability and correlations with large-scale wind power were determined using a scenario for large-scale building-mounted PV. Profound impacts on the power system were found only for the most extreme scenarios.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2010. 110 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 781
Keyword
Photovoltaics, Solar energy, Distributed generation, Load modelling, Time-use data, Markov chain, Power flow, Power system
National Category
Other Engineering and Technologies
Research subject
Engineering Science
Identifiers
urn:nbn:se:uu:diva-132907 (URN)978-91-554-7931-2 (ISBN)
Public defence
2010-12-10, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Note
Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 711Available from: 2010-11-18 Created: 2010-10-28 Last updated: 2011-03-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Widén, JoakimNilsson, AnnicaWäckelgård, Ewa

Search in DiVA

By author/editor
Widén, JoakimNilsson, AnnicaWäckelgård, Ewa
By organisation
Solid State Physics
In the same journal
Energy and Buildings
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 979 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf