uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Heparan sulfate biosynthesis: Characterization of an NDST1 splice variant
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
(English)Manuscript (preprint) (Other (popular science, discussion, etc.))
Abstract [en]

N-Deacetylase/N-sulfotransferases (NDSTs) are Golgi-located enzymes involved in the biosynthesis of heparan sulfate. They are bifunctional enzymes responsible for N-deacetylation of N-acetylglucosamine residues followed by N-sulfation of the generated free amino groups. In this paper we have identified and characterized a splice variant of NDST1 mRNA. The alternatively spliced mRNA transcript was shown to be present in varying amounts in different adult and embryonic mouse tissues. The protein resulting from translation of the spliced transcript (NDST1S) lacks the C-terminal half of fullength NDST and appears to be devoid of enzyme activity. As shown in HEK 293 cells overexpressing NDST1, a high expression of the splice variant resulted in reduced levels of NDST1. Unexpectedly, the level of N-sulfation was largely unaltered in heparan sulfate produced in NDST1S overexpressing cells while 6-O-sulfation was elevated and 2-O-sulfation was reduced. NDST1S shares the ability of NDST1 to interact with EXT2, one of the components of the heparan sulfate copolymerase. We speculate that NDST1S may alter the composition of the tentaive enzyme complex, the GAGosome, resulting in changes in the structure of heparan sulfate synthesized.

Keyword [en]
NDST1 splice, splice, NDST1, biochemistry, biosynthesis, heparan sulfate
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) Cell and Molecular Biology
Research subject
Biochemistry
Identifiers
URN: urn:nbn:se:uu:diva-123472OAI: oai:DiVA.org:uu-123472DiVA: diva2:314358
Available from: 2010-04-27 Created: 2010-04-27 Last updated: 2011-06-28

Open Access in DiVA

No full text

Authority records BETA

Dagälv, AndersKjellén, Lena

Search in DiVA

By author/editor
Dagälv, AndersKjellén, Lena
By organisation
Department of Medical Biochemistry and Microbiology
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 385 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf