uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mining ventricular cerebrospinal fluid from patients with traumatic brain injury using hexapeptide ligand libraries to search for trauma biomarkers
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry.
2010 (English)In: Journal of chromatography. B, ISSN 1570-0232, E-ISSN 1873-376X, Vol. 878, no 22, 2003-2012 p.Article in journal (Refereed) Published
Abstract [en]

Traumatic brain injury (TBI) is an acute event resulting from external force to the brain and is a major cause of death and disability associated with high health care costs in the western world. Additional injuries, originating from the secondary molecular events after the initial intensive care, may be limited by the use of objective biomarkers to provide the best treatment and patient prediction outcome. In this study, hexapeptide ligand libraries (HLL) have been used for the enrichment of suggested protein biomarkers for TBI in cerebrospinal fluid (CSF). HLL have the potential to enrich low abundant proteins and simultaneously reduce the high abundant proteins, rendering a sample with significantly reduced dynamic range. The CSF proteome from two TBI inflicted patients have been extensively mapped using a large initial sample volume obtained by extraventricular drainage. Shotgun proteomics, in combination with isoelectric focusing (IEF) and nano-LC-MS/MS, identified 339 unique proteins (MudPIT scoring p ≤ 0.05) with a protein overlap of 130 between the patients. As much as 45% of the proteins reported in the literature to be associated with degenerative/regenerative processes occurring after a trauma to the head were identified. Out of the most prominent potential protein biomarkers, such as neuron specific enolase, glial fibrillary acidic protein, myelin basic protein, creatine kinase B-type and S-100β, all except myelin basic protein were detected in the study. This study shows the possibility of using HLL as a tool for screening of low abundant protein biomarkers in human CSF.

Place, publisher, year, edition, pages
Elsevier , 2010. Vol. 878, no 22, 2003-2012 p.
Keyword [en]
Cerebrospinal fluid, hexapeptide ligand library, traumatic brain injury, proteomics, mass spectrometry
National Category
Analytical Chemistry
Research subject
Chemistry with specialization in Analytical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-126988DOI: 10.1016/j.jchromb.2010.05.036ISI: 000280210300014PubMedID: 20542479OAI: oai:DiVA.org:uu-126988DiVA: diva2:328275
Available from: 2010-07-02 Created: 2010-07-02 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Advances for Biomarker Discovery in Neuroproteomics using Mass Spectrometry: From Method Development to Clinical Application
Open this publication in new window or tab >>Advances for Biomarker Discovery in Neuroproteomics using Mass Spectrometry: From Method Development to Clinical Application
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Proteins offer a prominent group of compounds which may be ubiquitously affected in disease and used as biomarkers for early diagnosis, assessing treatment or drug development. Clinical proteomics aim to screen for protein biomarkers by a comprehensive analysis of all proteins expressed in a biological matrix during a certain pathology. Characterization of thousands of proteins in a complex biological matrix is from an analytical point of view a challenging task. Hence, sophisticated methods that are sensitive, specific and robust in a high-throughput manner are required. Mass spectrometry (MS) is able to perform this to a wide extent is.

A prominent source for finding protein biomarkers related to neurological diseases is the central nervous system (CNS) due to close proximity of the pathogenesis. Neuroproteomic analysis of CNS tissue samples is thus likely to reveal novel biomarkers. Cerebrospinal fluid (CSF) bathes the entire CNS and offers a good balance between clinical implementation and usefulness. Both matrices put further requirements on the methodology due to a high dynamic range, low protein concentration and limited sample amount.

The central objective of this thesis was to develop, assess and utilize analytical methods to be used in combination with MS to enable protein biomarker discovery in the CNS. The use of hexapeptide ligand libraries was exemplified on CSF from patients with traumatic brain injury and demonstrated the ability to compress the dynamic range to enable protein profiling in the order of mg/mL to pg/mL. Further, a method based on cloud-point extraction was developed for simultaneous enrichment and fractionation of hydrophobic/hydrophilic proteins in brain tissue. Comparison between label and label-free MS based strategies were carried out, mimicking the true conditions with a few differentially expressed proteins and a bulk of proteins occurring in unchanged ratio. Finally, a clinical application was carried out to explore the molecular mechanism underlying the analgesic effect of spinal cord stimulation (SCS) in patients with neuropathic pain. The CSF concentration of Lynx1 was found to increase upon SCS. Lynx1, acting as a specific modulator of the cholinergic system in the CNS, may act as a potential important molecular explanation of SCS-induced analgesia.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 64 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 966
Keyword
Mass Spectrometry, Biomarker, Proteomics, Central Nervous System, Cerebrospinal Fluid, Traumatic Brain Injury, Cloud-Point Extraction, Neuroproteomics, Relative Quantification, Spinal Cord Stimulation, Neuropathic Pain
National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:uu:diva-180109 (URN)978-91-554-8457-6 (ISBN)
Public defence
2012-10-18, Biomedicinskt Centrum, B42, Husargatan 3, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2012-09-26 Created: 2012-08-29 Last updated: 2013-01-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Sjödin, Marcus O.D.Bergquist, JonasWetterhall, Magnus

Search in DiVA

By author/editor
Sjödin, Marcus O.D.Bergquist, JonasWetterhall, Magnus
By organisation
Analytical Chemistry
In the same journal
Journal of chromatography. B
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 818 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf