uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The electronic structure of UCoGe by ab initio calculations and XPS experiment
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science.
Show others and affiliations
2010 (English)In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 22, no 1, 015503- p.Article in journal (Refereed) Published
Abstract [en]

The crystal and electronic structures of the orthorhombic compound UCoGe are presented and discussed. It has been either refined by the x-ray diffraction on a single crystal or computed within the local spin density functional theory, employing the fully relativistic version of the full-potential local-orbital band structure code, respectively. We particularly give our attention to investigating the Fermi surface and de Haas-van Alphen quantities of UCoGe. The calculated electronic density is then examined by x-ray photoelectron spectroscopy (XPS). Fairly good agreement is achieved between theoretical and experimental XPS results in the paramagnetic state. A small difference in the position (in energy scale) of the U 5f bands is caused by the electron localization effect observed in the experimental XPS. There is also some discrepancy for the Co 3d electron contributions below E-F. The Fermi surface in the non-magnetic state is of a semimetallic type while that in the ferromagnetic state, with the ordered moment of -0.47 mu(B)/f.u. along the c axis, is more metallic, with nesting properties that may favour superconductivity.

Place, publisher, year, edition, pages
2010. Vol. 22, no 1, 015503- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-127367DOI: 10.1088/0953-8984/22/1/015503ISI: 000272890700015OAI: oai:DiVA.org:uu-127367DiVA: diva2:329684
Available from: 2010-07-13 Created: 2010-07-13 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Oppeneer, Peter M

Search in DiVA

By author/editor
Oppeneer, Peter M
By organisation
Department of Physics and Materials Science
In the same journal
Journal of Physics: Condensed Matter
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 402 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf