uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Evolution, pattern, and partitioning of deformation during oblique continental rifting: Inferences from lithospheric-scale centrifuge models
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences.
2009 (English)In: Geochemistry Geophysics Geosystems, ISSN 1525-2027, Vol. 10, Q11015- p.Article in journal (Refereed) Published
Abstract [en]

Oblique rifting is investigated through centrifuge experiments that reproduce extension of a continental lithosphere containing a preexisting weakness zone. During extension, this weakness localizes deformation, and different rift obliquity is obtained by varying its trend with respect to the stretching direction. Model results show that deformation is mostly controlled by the obliquity angle a (defined as the angle between the orthogonal to the rift trend and the extension direction). For low obliquity (alpha < 45 degrees), rifting is initially characterized by activation of large, en echelon boundary faults bordering a subsiding rift depression, with no deformation affecting the rift floor. Increasing extension results in the abandonment of the boundary faults and the development of new faults within the rift depression. These faults are orthogonal to the direction of extension and arranged in two en echelon segments linked by a complex transfer zones, characterized by strike-slip component of motion. In these models, a strong strain partitioning is observed between the rift margins, where the boundary fault systems have an oblique-slip motion, and the valley floor that away from the transfer zones is affected by a pure extension. Moderate obliquity (alpha = 45 degrees) still results in a two-phase rift evolution, although boundary fault activity is strongly reduced, and deformation is soon transferred to the rift depression. The fault pattern is similar to that of low-obliquity models, although internal faults become slightly oblique to the orthogonal to the direction of extension. Deformation partitioning between the rift margins and the valley floor is still observed but is less developed than for low-obliquity rifting. For high obliquity (alpha > 45 degrees), no boundary faults form, and the extensional deformation affects the rift depression since early stages of extension. Dominance of the strike-slip motion over extension leads to the development of oblique-slip and nearly pure strike-slip faults, oblique to both the rift trend and the orthogonal to the extension direction, with no strain partitioning between the margins and the rift floor. These results suggest that oblique reactivation of preexisting weaknesses plays a major role in controlling rift evolution, architecture, and strain partitioning, findings that have a significant relevance for natural oblique rifts.

Place, publisher, year, edition, pages
2009. Vol. 10, Q11015- p.
Keyword [en]
oblique rifting, extensional deformation, rift architecture, strain partitioning
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:uu:diva-127397DOI: 10.1029/2009GC002676ISI: 000272146100002OAI: oai:DiVA.org:uu-127397DiVA: diva2:329849
Available from: 2010-07-14 Created: 2010-07-13 Last updated: 2010-07-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Earth Sciences
In the same journal
Geochemistry Geophysics Geosystems
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 142 hits
ReferencesLink to record
Permanent link

Direct link