uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
LOCAL RIEMANN HYPOTHESIS FOR COMPLEX NUMBERS
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
2009 (English)In: International Journal of Number Theory, ISSN 1793-0421, Vol. 5, no 7, 1221-1230 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, a special class of local zeta-functions is studied. The main theorem states that the functions have all zeros on the line R(s) = 1/2. This is a natural generalization of the result of Bump and Ng stating that the zeros of the Mellin transform of Hermite functions have R(s) = 1/2.

Place, publisher, year, edition, pages
2009. Vol. 5, no 7, 1221-1230 p.
Keyword [en]
Local Tate zeta-function, Weil representation, Mellin transform, orthogonal polynomials, Riemann hypothesis
National Category
Mathematics
Identifiers
URN: urn:nbn:se:uu:diva-127402DOI: 10.1142/S1793042109002651ISI: 000272094400006OAI: oai:DiVA.org:uu-127402DiVA: diva2:329861
Available from: 2010-07-14 Created: 2010-07-13 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Mathematics
In the same journal
International Journal of Number Theory
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 360 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf