uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Oxidation of oleic acid at the air-water interface and its potential effects on cloud critical supersaturations
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
Show others and affiliations
2009 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 11, no 35, 7699-7707 p.Article in journal (Refereed) Published
Abstract [en]

The oxidation of organic films on cloud condensation nuclei has the potential to affect climate and precipitation events. In this work we present a study of the oxidation of a monolayer of deuterated oleic acid (cis-9-octadecenoic acid) at the air-water interface by ozone to determine if oxidation removes the organic film or replaces it with a product film. A range of different aqueous sub-phases were studied. The surface excess of deuterated material was followed by neutron reflection whilst the surface pressure was followed using a Wilhelmy plate. The neutron reflection data reveal that approximately half the organic material remains at the air-water interface following the oxidation of oleic acid by ozone, thus cleavage of the double bond by ozone creates one surface active species and one species that partitions to the bulk (or gas) phase. The most probable products, produced with a yield of similar to(87 +/- 14)%, are nonanoic acid, which remains at the interface, and azelaic acid (nonanedioic acid), which dissolves into the bulk solution. We also report a surface bimolecular rate constant for the reaction between ozone and oleic acid of (7.3 +/- 0.9) x 10(-11) cm(2) molecule s(-1). The rate constant and product yield are not affected by the solution sub-phase. An uptake coefficient of ozone on the oleic acid monolayer of similar to 4 x 10(-6) is estimated from our results. A simple Kohler analysis demonstrates that the oxidation of oleic acid by ozone on an atmospheric aerosol will lower the critical supersaturation needed for cloud droplet formation. We calculate an atmospheric chemical lifetime of oleic acid of 1.3 hours, significantly longer than laboratory studies on pure oleic acid particles suggest, but more consistent with field studies reporting oleic acid present in aged atmospheric aerosol.

Place, publisher, year, edition, pages
2009. Vol. 11, no 35, 7699-7707 p.
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-128284DOI: 10.1039/b906517bISI: 000269400500021OAI: oai:DiVA.org:uu-128284DiVA: diva2:331079
Available from: 2010-07-21 Created: 2010-07-20 Last updated: 2012-03-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rennie, Adrian R.
By organisation
Department of Physics and Astronomy
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 158 hits
ReferencesLink to record
Permanent link

Direct link