uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
q-Calculus as operational algebra
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
2009 (English)In: Proceedings of the Estonian Academy of Sciences, ISSN 1736-6046, Vol. 58, no 2, 73-97 p.Article in journal (Refereed) Published
Abstract [en]

This second paper on operational calculus is a continuation of Ernst, T. q-Analogues of some operational formulas. Algebras Groups Geom., 2006, 23(4), 354-374. We find multiple q-analogues of formulas in Carlitz, L. A note on the Laguerre polynomials. Michigan Math. J., 1960, 7, 219-223, for the Cigler q-Laguerre polynomials (Ernst, T. A method for q-calculus. J. Nonlinear Math. Phys., 2003, 10(4), 487-525). The q-Jacobi polynomials (Jacobi, C. G. J. Werke 6. Berlin, 1891) are treated in the same way, we generalize further to q-analogues of Manocha, H. L. and Sharma, B. L. (Some formulae for Jacobi polynomials. Proc. Cambridge Philos. Soc., 1966, 62, 459-462) and Singh, R. P. (Operational formulae for Jacobi and other polynomials. Rend. Sem. Mat. Univ. Padova, 1965, 35, 237-244). A field of fractions for Cigler's multiplication operator (Cigler, J. Operatormethoden fur q-Identitaten II, q-Laguerre-Polynome. Monatsh. Math., 1981, 91, 105-117) is used in the computations. The formulas for q-Jacobi polynomials are mostly formal. We find q-orthogonality relations for q-Laguerre, q-Jacobi, and q-Legendre polynomials using q-integration by parts. This q-Legendre polynomial is given here for the first time, we also find its q-difference equations. An inequality for a q-exponential function is proved. The q-difference equation for (p)phi(p-1) (a(1),...,a(p); b(1),...,b(p-1)vertical bar q, z) is given improving on Smith, E. R. Zur Theorie der Heineschen Reihe und ihrer Verallgemeinerung. Diss. Univ. Munchen 1911, p. 11, by using e(k) = elementary symmetric polynomial. Partial q-difference equations for the q-Appell and q-Lauricella functions are found, improving on Jackson, F. H. On basic double hypergeometric functions. Quart. J. Math., Oxford Ser., 1942, 13, 69-82, and Gasper, G. and Rahman, M. Basic hypergeometric series. Second edition. Cambridge, 2004, p. 299, where q-difference equations for q-Appell functions were given with different notation. The q-difference equation for Phi(1) can also be written in canonical form, a q-analogue of [p. 146] Mellin, H. J. Uber den Zusammenhang zwischen den linearen Differential- und Differenzengleichunge, Acta Math., 1901, 25, 139-164.

Place, publisher, year, edition, pages
2009. Vol. 58, no 2, 73-97 p.
Keyword [en]
q-difference equations, q-Laguerre, q-Jacobi polynomials, q-Legendre polynomials, q-orthogonality, formal equality, q-Appell function, q-Lauricella function, Rodriguez operator
National Category
Mathematics
Identifiers
URN: urn:nbn:se:uu:diva-128390DOI: 10.3176/proc.2009.2.01ISI: 000267434700001OAI: oai:DiVA.org:uu-128390DiVA: diva2:331516
Available from: 2010-07-23 Created: 2010-07-20 Last updated: 2010-07-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Mathematics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 390 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf