uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Variation of Excitation Energy Influences the Product Distribution of a Two-Step Electron Transfer: S-2 vs S-1 Electron Transfer in a Zn(II)porphyrin-Viologen Complex
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
2009 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 131, no 23, 7940-7941 p.Article in journal (Refereed) Published
Abstract [en]

We have, for the first time for molecular systems in solution, shown a case where the variation of excitation energy influences the product distribution of a two-step electron transfer. The photoexcitation Was to the porphyrin-localized S-2 state or either of the S-1(v = 1) or S-1(v = 0) states of an aqueous Zn(II)-meso-tetrasulphonatophenyl-porphyrin methylviologen (ZnTPPS4-/MV2+) complex. Both forward and back electron transfer occur on a subpicosecond time scale (tau(FET) = 0.2, tau(BET) 0.7 ps). The excess energy Of the higher excitations partially survives both electron transfer steps. This is seen by different distributions of unrelaxed ground states, which are generated by the back electron transfer and has unique UV-vis spectroscopic signatures. State selective electron transfer opens interesting possibilities for reaction control, and the results represent initial steps in that direction

Place, publisher, year, edition, pages
2009. Vol. 131, no 23, 7940-7941 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-128393DOI: 10.1021/ja900729jISI: 000267623100002OAI: oai:DiVA.org:uu-128393DiVA: diva2:331518
Available from: 2010-07-23 Created: 2010-07-20 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Ultrafast, Non-Equilibrium Electron Transfer Reactions of Molecular Complexes in Solution
Open this publication in new window or tab >>Ultrafast, Non-Equilibrium Electron Transfer Reactions of Molecular Complexes in Solution
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Photoinduced electron transfer is a fundamentally interesting process; it occurs everywhere in the natural world. Studies on electron transfer shed light on questions about the interaction between molecules and how the dynamics of these can be utilized to steer the electron transfer processes to achieve a desired goal. The goal may be to get electrons to the electrode of a solar cell, or to make the electrons form an energy rich fuel such as hydrogen, and it may also be an input or output for molecular switches. The importance of electron transfer reactions will be highlighted in this thesis, however, the main motivation is to gain a better understanding of the fundamental processes that affect the rate and direction of the electron transfer.

A study of photoinduced electron transfer (ET) in a series of metallophorphyrin/bipyridinium complexes in aqueous solution provided fresh insight concerning the intimate relationship between vibrational relaxation and electron transfer. The forward electron transfer from porphyrin to bipyridinium as well as the following back electron transfer to the ground state could be observed by femtosecond transient absorption spectroscopy. Both the reactant and the product states of the ET processes were vibrationally unrelaxed, in contrary to what is assumed for most expressions of the ET rates. This could be understood from the observation of unrelaxed ground states. The excess energy given by the initial excitation of the porphyrin does not relax completely during the two steps of electron transfer. This is an unusual observation, not reported in the literature prior the studies presented in this thesis. This study also gave the first clear evidence of electronically excited radical pairs formed as products of intramolecular electron transfer. Signs of electronically excited radical pairs were seen in transient spectra, and were further verified by the observation that the rates followed a Marcus normal region behavior for all excitation wavelengths, despite the relatively large excess energy of the second excited state.

This thesis also concerns electron transfer in solar cell dyes and mixed valence complexes. In the ruthenium polypyridyl complex Ru(dcb)2(NCS)2, where dcb = 4,4’-dicarboxy-2,2’-bipyridine, inter-ligand electron transfer (ILET) in the 3MLCT state was followed by means of femtosecond transient absorption anisotropy that was probed in the mid-IR region. Unexpectedly, ILET was not observed because electron density was localized on the same bpy during the time-window allowed by the rotational lifetime.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 90 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1205
Keyword
electron transfer, laser, spectroscopy, transient absorption, anisortopy, inter ligand electron transfer, dye sensitized solar cell, DSSC, vibrational relaxation, ultrafast dynamics, fs spectroscopy
National Category
Chemical Sciences
Research subject
Chemistry with specialization in Chemical Physics
Identifiers
urn:nbn:se:uu:diva-235461 (URN)978-91-554-9107-9 (ISBN)
Public defence
2014-12-19, Häggsalen, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2014-11-26 Created: 2014-11-03 Last updated: 2015-02-03

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Photochemistry and Molecular Science
In the same journal
Journal of the American Chemical Society
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 390 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf