uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
A self-consistent empirical model atmosphere, abundance and stratification analysis of the benchmark roAp star alpha Circini
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
2009 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 499, no 3, 851-863 p.Article in journal (Refereed) Published
Abstract [en]

Context. Chemically peculiar (CP) stars are unique natural laboratories for the investigation of the microscopic diffusion processes of chemical elements. The element segregation under the influence of gravity and radiation pressure leads to the appearance of strong abundance gradients in the atmospheres of CP stars. Consequently, the atmospheric temperature-pressure structure of these objects could deviate significantly from the atmospheres of normal stars with homogeneous abundances. Aims. In this study we performed a self-consistent, empirical model atmosphere study of the brightest rapidly oscillating Ap star alpha Cir. We account for chemical stratification in the model atmosphere calculations and assess the importance of non-uniform vertical element distribution on the model structure, energy distribution and hydrogen line profiles. Methods. For the chemical stratification analysis we use the DDAFIT minimization tool in combination with a magnetic spectrum synthesis code. The model atmospheres with inhomogeneous vertical distributions of elements are calculated with the LLMODELS stellar model atmosphere code. Results. Based on an iterative procedure of the chemical abundance analysis of 52 ions of 35 elements, stratification modeling of 4 elements (Si, Ca, Cr and Fe) and subsequent re-calculations of the atmospheric structure, we derived a new model atmosphere of alpha Cir which is consistent with the inferred atmospheric chemistry of the star. We find T-eff = 7500 K, log g = 4.1, and demonstrate that chemical stratification has a noticeable impact on the model structure and modifies the formation of the hydrogen Balmer lines. At the same time, the energy distribution appears to be less sensitive to the presence of large abundance gradients. Conclusions. Our spectroscopically determined T-eff of alpha Cir agrees with the fundamental effective temperature of this star. This shows that temperatures inferred in detailed spectroscopic analyses of cool magnetic CP stars are not affected by a large systematic bias.

Place, publisher, year, edition, pages
2009. Vol. 499, no 3, 851-863 p.
Keyword [en]
stars: abundances, stars: atmospheres, stars: chemically peculiar, stars: individual: alpha Circini
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-129004DOI: 10.1051/0004-6361/200911653ISI: 000266730600026OAI: oai:DiVA.org:uu-129004DiVA: diva2:332432
Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2010-08-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Physics and Astronomy
In the same journal
Astronomy and Astrophysics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 190 hits
ReferencesLink to record
Permanent link

Direct link