uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Show others and affiliations
2009 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 106, no 14, 5725-5730 p.Article in journal (Refereed) Published
Abstract [en]

The obligate intracellular bacterium Wolbachia pipientis infects around 20% of all insect species. It is maternally inherited and induces reproductive alterations of insect populations by male killing, feminization, parthenogenesis, or cytoplasmic incompatibility. Here, we present the 1,445,873-bp genome of W. pipientis strain wRi that induces very strong cytoplasmic incompatibility in its natural host Drosophila simulans. A comparison with the previously sequenced genome of W. pipientis strain wMeI from Drosophila melanogaster identified 35 breakpoints associated with mobile elements and repeated sequences that are stable in Drosophila lines transinfected with wRi. Additionally, 450 genes with orthologs in wRi and wMeI were sequenced from the W. pipientis strain wUni, responsible for the induction of parthenogenesis in the parasitoid wasp Muscidifurax uniraptor. The comparison of these A-group Wolbachia strains uncovered the most highly recombining intracellular bacterial genomes known to date. This was manifested in a 500-fold variation in sequence divergences at synonymous sites, with different genes and gene segments supporting different strain relationships. The substitution-frequency profile resembled that of Neisseria meningitidis, which is characterized by rampant intraspecies recombination, rather than that of Rickettsia, where genes mostly diverge by nucleotide substitutions. The data further revealed diversification of ankyrin repeat genes by short tandem duplications and provided examples of horizontal gene transfer across A- and B- group strains that infect D. simulans. These results suggest that the transmission dynamics of Wolbachia and the opportunity for coinfections have created a freely recombining intracellular bacterial community with mosaic genomes.

Place, publisher, year, edition, pages
2009. Vol. 106, no 14, 5725-5730 p.
Keyword [en]
horizontal transfer, recombination, ankyrin repeat gene, genome evolution, insect symbiosis
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-129130DOI: 10.1073/pnas.0810753106ISI: 000264967500050OAI: oai:DiVA.org:uu-129130DiVA: diva2:337704
Available from: 2010-08-09 Created: 2010-08-05 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Klasson, Lisa

Search in DiVA

By author/editor
Klasson, Lisa
By organisation
Molecular Evolution
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 913 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf