uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Biochemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Biochemistry.
1999 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 38, no 29, 9254-9263 p.Article in journal (Refereed) Published
Abstract [en]

Glutathione reductase from the cyanobacterium Anabaena PCC 7120 contains a pyridine-nucleotide-binding motif differing from that of the enzyme from other sources and an insertion of 10 amino acid residues. Homology modeling was used to obtain a model of the enzyme structure. It revealed that in the Anabaena enzyme Lys(203) replaces Arg, found to interact with the 2'-phosphate of NADP(H) in the enzyme from other sources, and that it has an extra loop near the entrance of the pyridine-nucleotide-binding site. The steady-state and preequilibrium kinetic properties were characterized for the wild-type enzyme, a K203R, and a loop deletion mutant. All enzyme forms had higher catalytic efficiency with NADPH than with NADH, although the difference was less than for glutathione reductase from other sources. The specificity was most pronounced in the formation of the charge-transfer complex between the pyridine nucleotide and oxidized enzyme-bound FAD, as compared to later steps in the reaction. Unexpectedly, by replacing Lys(203) with Arg, the specificity for NADPH was diminished in the complete redox reaction. Ser(174) appears to interact with the 2'-phosphate of NADPH and introduction of arginine instead of lysine, therefore, has little effect on the interaction with this coenzyme. However, the efficiency in forming the charge-transfer complex between the pyridine nucleotide and oxidized enzyme-bound FAD was increased in the K203R mutant using NADPH but not with NADH. The lack of affinity toward 2',5'-ADP-Sepharose by the wild-type enzyme was not changed by replacing Lys(203) with Arg but deletion of the loop resulted in an enzyme that bound to the immobilized ligand. Removal of the loop increased the efficiency of the enzyme in the reductive half-reaction with both pyridine-nucleotides as well as in the overall catalytic mechanism.

Place, publisher, year, edition, pages
1999. Vol. 38, no 29, 9254-9263 p.
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-121137DOI: 10.1021/bi9903300ISI: 000081616000008PubMedID: 10413499OAI: oai:DiVA.org:uu-121137DiVA: diva2:343687
Available from: 2010-08-15 Created: 2010-03-18 Last updated: 2010-09-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Danielson, U. Helena

Search in DiVA

By author/editor
Danielson, U. Helena
By organisation
Biochemistry
In the same journal
Biochemistry
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 820 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf