uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling and TOFOR measurements of scattered neutrons at JET
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
2010 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 52, no 8, 085002- p.Article in journal (Refereed) Published
Abstract [en]

In this paper, the scattered and direct neutron fluxes in the line of sight (LOS) of the TOFOR neutron spectrometer at JET are simulated and the simulations compared with measurement results. The Monte Carlo code MCNPX is used in the simulations, with a vessel material composition obtained from the JET drawing office and neutron emission profiles calculated from TRANSP simulations of beam ion density profiles. The MCNPX simulations show that the material composition of the scattering wall has a large effect on the shape of the scattered neutron spectrum. Neutron source profile shapes as well as radial and vertical source displacements in the TOFOR LOS are shown to only marginally affect the scatter, while having a larger impact on the direct neutron flux. A matrix of simulated scatter spectra for mono-energetic source neutrons is created which is folded with an approximation of the source spectrum for each JET pulse studied to obtain a scatter component for use in the data analysis. The scatter components thus obtained are shown to describe the measured data. It is also demonstrated that the scattered flux is approximately constant relative to the total neutron yield as measured with the JET fission chambers, while there is a larger spread in the direct flux, consistent with simulations. The simulated effect on the integrated scattered/direct ratio of an increase with movements outward along the radial direction and a drop at higher values of the vertical plasma position is also reproduced in the measurements. Finally, the quantitative agreement found in scatter/direct ratios between simulations (0.185 ± 0.005) and measurements (0.187 ± 0.050) serves as a solid benchmark of the MCNPX model used.

Place, publisher, year, edition, pages
2010. Vol. 52, no 8, 085002- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-129632DOI: 10.1088/0741-3335/52/8/085002ISI: 000279709700002OAI: oai:DiVA.org:uu-129632DiVA: diva2:344639
Available from: 2010-08-19 Created: 2010-08-19 Last updated: 2011-01-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://stacks.iop.org/0741-3335/52/i=8/a=085002
By organisation
Applied Nuclear Physics
In the same journal
Plasma Physics and Controlled Fusion
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 375 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf