uu.seUppsala University Publications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Re-dressing Emperor: Four Dimensional Yang-Mills Theory, Gauge Invariant Mass And Fluctuating Three BranesRe-dressing Emperor: Four Dimensional Yang-Mills Theory, Gauge Invariant Mass And Fluctuating Three BranesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); (English)In: Journal of Physics A: Mathematical and General, ISSN 0305-4470Article in journal (Refereed) Submitted
##### Abstract [en]

##### Identifiers

URN: urn:nbn:se:uu:diva-129669OAI: oai:DiVA.org:uu-129669DiVA: diva2:344828
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2010-08-22 Created: 2010-08-22 Last updated: 2010-08-30Bibliographically approved

We are interested in a gauge invariant coupling between four dimensional Yang-Mills ﬁeld and a three brane that can ﬂuctuate into higher dimensions. For this we interpret the Yang-Mills theory as a higher dimensional bulk gravity theory with dynamics that is governed by the Einstein action, and with a metric tensor constructed from the gauge ﬁeld in a manner that displays the original gauge symmetry as an isometry. The brane moves in this higher dimensional space-time under the inﬂuence of its bulk gravity, with dynamics determined by the Nambu action. This introduces the desired interaction between the brane and the gauge ﬁeld in a way that preserves the original gauge invariance as an isometry of the induced metric. After a prudent change of variables the result can be interpreted as a gauge invariant and massive vector ﬁeld that propagates in the original space-time R4 : The presence of the brane becomes entirely invisible, except for the mass.We are interested in a gauge invariant coupling between four dimensional Yang-Mills ﬁeld and a three brane that can ﬂuctuate into higher dimensions. For this we interpret the Yang-Mills theory as a higher dimensional bulk gravity theory with dynamics that is governed by the Einstein action, and with a metric tensor constructed from the gauge ﬁeld in a manner that displays the original gauge symmetry as an isometry. The brane moves in this higher dimensional space-time under the inﬂuence of its bulk gravity, with dynamics determined by the Nambu action. This introduces the desired interaction between the brane and the gauge ﬁeld in a way that preserves the original gauge invariance as an isometry of the induced metric. After a prudent change of variables the result can be interpreted as a gauge invariant and massive vector ﬁeld that propagates in the original space-time R4 : The presence of the brane becomes entirely invisible, except for the mass.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});