uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mechanisms and physiological effects of protamine resistance in Salmonella enterica serovar Typhimurium LT2
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
2010 (English)In: Journal of Antimicrobial Chemotherapy, ISSN 0305-7453, E-ISSN 1460-2091, Vol. 65, no 5, 876-887 p.Article in journal (Refereed) Published
Abstract [en]

OBJECTIVES: Protamines are cationic peptides that exert antimicrobial activity. We have examined the evolution of bacterial resistance to protamine sulphate and the resulting effects on fitness and physiology, with the objective of increasing knowledge about mechanisms of bacterial resistance to antimicrobial peptides. METHODS: Spontaneous, protamine-resistant Salmonella enterica serovar Typhimurium (i.e. Salmonella Typhimurium) LT2 mutants were isolated on agarose plates containing protamine sulphate. Resistance mutations were identified using transposon insertions and DNA sequencing. Peptide susceptibility was determined by broth dilution tests and antibiotic susceptibility using Etests. Fitness was determined as log-phase growth rates. Growth-compensated strains were isolated by serial passage through population bottlenecks followed by visual screening for large colonies. RESULTS: Protamine-resistant mutants appeared at a rate of 2.3 x 10(-7)/cell/generation. These mutants were 2-20 times more resistant to protamine than the parental strain and less susceptible to several other antimicrobials, including colistin, gentamicin, lactoferricin and human defensin HNP-1. The resistance mutations were mapped to genes involved in haem biosynthesis and respiration, and were associated with a reduction in bacterial fitness. Some mutants could, in the absence of protamine, be evolved to higher fitness by acquiring second-site compensatory mutations. CONCLUSIONS: Spontaneous mutants resistant to protamine sulphate were readily selected in Salmonella Typhimurium LT2. These mutants were less susceptible to several other peptides and antibiotics, and had the characteristics of small colony variants, a phenotype often associated with persistent and recurrent infections that are difficult to treat and which could be a strategy for bacteria to escape the killing effects of antimicrobial peptides.

Place, publisher, year, edition, pages
2010. Vol. 65, no 5, 876-887 p.
Keyword [en]
small colony variants, antimicrobial peptides, fitness costs, haem biosynthesis
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-130133DOI: 10.1093/jac/dkq059ISI: 000276527500009PubMedID: 20233778OAI: oai:DiVA.org:uu-130133DiVA: diva2:346629
Available from: 2010-09-01 Created: 2010-09-01 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Andersson, Dan I

Search in DiVA

By author/editor
Andersson, Dan I
By organisation
Department of Medical Biochemistry and Microbiology
In the same journal
Journal of Antimicrobial Chemotherapy
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 716 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf