uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Radionuclide molecular imaging using affibody molecules
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. (BMS)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences. (BMS)
2010 (English)In: Current Pharmaceutical Biotechnology, ISSN 1389-2010, Vol. 11, no 6, 581-589 p.Article, review/survey (Refereed) Published
Abstract [en]

The current way to increase efficacy of cancer therapy is the use of molecular recognition of aberrantly expressed gene products for selective treatment. However, only a fraction of the patients have tumors with a particular molecular target. Radionuclide imaging of molecular targets might help to stratify patient for cancer treatment. Affibody molecules are scaffold proteins, which can be selected for high affinity recognition of proteinaceous molecular targets. The capacity to re-fold under physiological conditions allows labeling of Affibody molecules in a broad range of pH and temperatures with preserved binding properties. Peptide synthesis or introduction of a unique cysteine enables site-specific labeling of Affibody molecules, resulting in uniform conjugates with well-defined pharmacological characteristics. The small size (7 kDa) of Affibody molecules provides rapid extravasation, rapid tumor penetration, and rapid clearance of unbound tracer from healthy organs and tissues. In combination with sub-nanomolar affinity, this results in high contrast in vivo imaging a few hours after injection. Excellent targeting has been demonstrated in pre-clinical studies with HER2-targeting Affibody molecules labeled with (99m)Tc and (111)In for single photon computed tomography (SPECT), and (18)F, (64)Cu, (124)I and (68)Ga for positron emission tomography (PET). Pilot clinical data confirm the high potential of Affibody molecules.

Place, publisher, year, edition, pages
2010. Vol. 11, no 6, 581-589 p.
Keyword [en]
Affibody molecules; EGFR; HER2; molecular imaging; radionuclide; scaffold proteins; targeting
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-130209DOI: 10.2174/138920110792246609ISI: 000281435100005PubMedID: 20497119OAI: oai:DiVA.org:uu-130209DiVA: diva2:348245
Available from: 2010-09-04 Created: 2010-09-03 Last updated: 2011-06-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Department of Medical SciencesBiomedical Radiation SciencesBiomedical Radiation Sciences
In the same journal
Current Pharmaceutical Biotechnology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 408 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf