uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Charges for Large Scale Binding Free Energy Calculations with the Linear Interaction Energy Method
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
2009 (English)In: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 5, no 2, 380-395 p.Article in journal (Refereed) Published
Abstract [en]

The linear interaction energy method (LIE), which combines force field based molecular dynamics (MD) simulations and linear response theory, has previously been shown to give fast and reliable estimates of ligand binding free energies, suggesting that this type of technique could be used also in a high-throughput fashion. However, a limiting step in such applications is the assignment of atomic charges for compounds that have not been parametrized within the given force field, in this case OPLS-AA. In order to reach an automatable solution to this problem, we have examined the performance of nine different ab initio and semiempirical charge methods, together with estimates of solvent induced polarization. A test set of ten HIV-1 reverse transcriptase inhibitors was selected, and LIE estimates of their relative binding free energies were calculated using the resulting 23 different charge variants. Over 800 ns of MD simulation show that the LIE method provides excellent estimates with several different charge methods and that the semiempirically derived CM1A charges, in particular, emerge as a fast and reliable alternative for fully automated LIE based virtual screens with the OPLS-AA force field. Our conclusions regarding different charge models are also expected to be valid for other types of force field based binding free energy calculations, such as free energy perturbation and thermodynamic integration simulations.

Place, publisher, year, edition, pages
2009. Vol. 5, no 2, 380-395 p.
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-130789DOI: 10.1021/ct800404fISI: 000263480700015OAI: oai:DiVA.org:uu-130789DiVA: diva2:351227
Available from: 2010-09-13 Created: 2010-09-13 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Cell and Molecular Biology
In the same journal
Journal of Chemical Theory and Computation
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 382 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf