uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In situ study of nickel formation during decomposition of chemical vapor deposition Ni3N films
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Inorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Inorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Inorganic Chemistry.
2010 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 28, no 5, 1203-1209 p.Article in journal (Refereed) Published
Abstract [en]

The thermal decomposition of Ni3N thin films, deposited by chemical vapor deposition on SrTiO3 (001) and Si (100) substrates, has been studied by in situ x-ray diffraction, as well as temperature-programed controlled gas emission in both inert and hydrogen atmospheres. The decomposition at inert atmosphere conditions starts at the film/substrate interface, which results in a high degree of ordering in the formed nickel film. In the H-2 atmosphere, the initial film ordering is less pronounced and the decomposition occurs from the film surface and downward. This means that by choosing the annealing atmosphere, inert or hydrogen, the formation of the Ni film can be localized to either the original nitride/substrate interface or to the surface of the nitride. The annealed films show a cube-on-cube growth with respect to the SrTiO3 (001) substrate. The film morphology after the annealing experiments resembles the one of the as-deposited films. The lowest resistivity value is measured for the films annealed in the H-2 atmosphere. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3478298]

Place, publisher, year, edition, pages
2010. Vol. 28, no 5, 1203-1209 p.
National Category
Inorganic Chemistry
Research subject
Chemistry with specialization in Inorganic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-133857DOI: 10.1116/1.3478298ISI: 000282230400025OAI: oai:DiVA.org:uu-133857DiVA: diva2:370480
Available from: 2010-11-16 Created: 2010-11-16 Last updated: 2010-12-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Lindahl, ErikOttosson, MikaelCarlsson, Jan-Otto

Search in DiVA

By author/editor
Lindahl, ErikOttosson, MikaelCarlsson, Jan-Otto
By organisation
Inorganic Chemistry
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 768 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf