uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identification of domains responsible for specific membrane transport and ligand specificity of the ACTH receptor (MC2R)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. (Functional Pharmacology/Funktionell Farmakologi)
(Functional Pharmacology/Funktionell Farmakologi)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. (Functional Pharmacology/Funktionell Farmakologi)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. (Functional Pharmacology/Funktionell Farmakologi)
Show others and affiliations
2010 (English)In: Molecular and Cellular Endocrinology, ISSN 0303-7207, E-ISSN 1872-8057, Vol. 321, no 2, 175-183 p.Article in journal (Refereed) Published
Abstract [en]

The adrenocorticotropic hormone (ACTH) receptor has highly specific membrane expression that is limited to adrenal cells; in other cell types the polypeptide fails to be transported to the cell surface. Unlike other evolutionarily related members of the melanocortin receptor family (MC1R-MC5R) that recognize different melanocortin peptides, ACTHR (MC2R) binds only ACTH. We used a mutagenesis approach involving systematic construction of chimeric ACTHR/MC4R receptors to identify the domains determining the selectivity of ACTHR membrane transport and ACTH binding. In total 15 chimeric receptors were created by replacement of selected domains of human ACTHR with the corresponding regions of human MC4R. We developed an analytical method to accurately quantify cell-membrane localization of recombinant receptors fused with enhanced green fluorescent protein by confocal fluorescence microscopy. The chimeric receptors were also tested for their ability to bind ACTH (1-24) and the melanocyte-stimulating hormone (MSH) analog, Nle4, DPhe7-alpha-MSH, and to induce a cAMP response. Our results indicate that substitution of the MC4R N-terminal segment with the homologous segment of ACTHR significantly decreased membrane transport. We also identified another signal localized in the third and fourth transmembrane regions as the main determinant of ACTHR intracellular retention. In addition, we found that the fourth and fifth transmembrane domains of the ACTHR are involved in ACTH binding selectivity. We discuss the mechanisms involved in bypassing these arrest signals via an interaction with melanocortin 2 receptor accessory protein (MRAP) and the possible mechanisms that determine the high ligand-binding specificity of ACTHR.

Place, publisher, year, edition, pages
2010. Vol. 321, no 2, 175-183 p.
Keyword [en]
GPCR, Rhodopsin, Melanocortin, ACTHR, Chimeric receptors, MRAP, GFP, Membrane transport
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-135065DOI: 10.1016/j.mce.2010.02.032ISI: 000277919000009PubMedID: 20206229OAI: oai:DiVA.org:uu-135065DiVA: diva2:374346
Available from: 2010-12-03 Created: 2010-12-03 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Department of Neuroscience
In the same journal
Molecular and Cellular Endocrinology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 407 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf