uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
C6ORF192 forms a unique evolutionary branch among solute carriers (SLC16, SLC17, and SLC18) and is abundantly expressed in several brain regions
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
2010 (English)In: Journal of Molecular Neuroscience, ISSN 0895-8696, E-ISSN 1559-1166, Vol. 41, no 2, 230-242 p.Article in journal (Refereed) Published
Abstract [en]

About one third of all known human proteins are membrane proteins, which constitute several large families. The solute carriers with over 300 known members are probably the second largest family with additional members frequently being identified. We recently found a new putative solute carrier, C6ORF192, belonging to the major facilitator superfamily type of proteins. The gene is evolutionary highly conserved with a single copy present in each of the genomes from mouse, rat, chicken, zebrafish, tetraodon, Caenorhabditis elegans, and Drosophila melanogaster. C6ORF192 forms a novel evolutionary branch of solute carriers and is most closely related to the solute carrier families 16, 17, and 18, all members of the major facilitator superfamily. Ten of the 25 members of these families show amino acid identity with C6ORF192 ranging from 21% to 27%. C6ORF192 differs however, structurally from these families and does not share key motifs in the transmembrane domains. Expression profiling by quantitative real-time polymerase chain reaction and in situ hybridization showed that C6ORF192 transcript can be detected in several tissues, both in the central nervous system and the periphery.

Place, publisher, year, edition, pages
2010. Vol. 41, no 2, 230-242 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-135072DOI: 10.1007/s12031-009-9222-7ISI: 000276882800002PubMedID: 19697161OAI: oai:DiVA.org:uu-135072DiVA: diva2:374358
Available from: 2010-12-03 Created: 2010-12-03 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Functional Pharmacology
In the same journal
Journal of Molecular Neuroscience
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 380 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf