uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
2010 (English)In: Biogeosciences, ISSN 1726-4170, E-ISSN 1726-4189, Vol. 7, no 8, 2311-2325 p.Article in journal (Refereed) Published
Abstract [en]

Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2) production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as 'soil-CO2 profile method'. This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D) calculated based on relationships with soil porosity and moisture ('physically modeled' D). Our objective was to investigate whether these inconsistencies were related to (1) the applied interpolation and solution methods and/or (2) uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn) mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2 exchange fluxes across water-filled pores causes the soil-CO2 profile method to fail. These fluxes are driven by the different diffusivities in inter- vs. intra-aggregate pores which create permanent CO2 gradients if separated by a 'diffusive water barrier'. These results corroborate other studies which have shown that the theory to treat gas diffusion as homogeneous process, a precondition for use of the soil-CO2 profile method, is inaccurate for pore networks which exhibit spatial separation between CO2 production and diffusion out of the soil.

Place, publisher, year, edition, pages
2010. Vol. 7, no 8, 2311-2325 p.
National Category
Biological Sciences
URN: urn:nbn:se:uu:diva-135173DOI: 10.5194/bg-7-2311-2010ISI: 000281431800002OAI: oai:DiVA.org:uu-135173DiVA: diva2:374611
Available from: 2010-12-06 Created: 2010-12-06 Last updated: 2016-04-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Koehler, Birgit
By organisation
In the same journal
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 196 hits
ReferencesLink to record
Permanent link

Direct link