uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Defect-controlled electronic transport in single, bilayer, and N-doped graphene: Theory
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2010 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 81, no 24, 245405- p.Article in journal (Refereed) Published
Abstract [en]

We report on a theoretical study of the electronic-structure and transport properties of single and bilayer graphene with vacancy defects, as well as N-doped graphene. The theory is based on first-principles calculations as well as model investigations in terms of real-space Green's functions. We show that increasing the defect concentration increases drastically the conductivity in the limit of zero applied gate voltage, by establishing carriers in originally carrier-free graphene, a fact which is in agreement with recent observations. We calculate the amount of defects needed for a transition from a nonconducting to a conducting regime (i.e., a metal-insulator transition) and establish the threshold of the defect concentration where the increase in impurity scattering dominates over the increase in carrier-induced conductivity.

Place, publisher, year, edition, pages
2010. Vol. 81, no 24, 245405- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-136075DOI: 10.1103/PhysRevB.81.245405ISI: 000278301300007OAI: oai:DiVA.org:uu-136075DiVA: diva2:376152
Available from: 2010-12-10 Created: 2010-12-09 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Fransson, JonasEriksson, Olle

Search in DiVA

By author/editor
Fransson, JonasEriksson, Olle
By organisation
Materials Theory
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 433 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf