uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A myopathy-linked tropomyosin mutation severely alters thin filament conformational changes during activation
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Clinical Neurophysiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Clinical Neurophysiology.
2010 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 107, no 21, 9807-9812 p.Article in journal (Refereed) Published
Abstract [en]

Human point mutations in alpha- and beta-tropomyosin induce contractile deregulation, skeletal muscle weakness, and congenital myopathies. The aim of the present study was to elucidate the hitherto unknown underlying molecular mechanisms. Hence, we recorded and analyzed the X-ray diffraction patterns of human membrane-permeabilized muscle cells expressing a particular beta-tropomyosin mutation (R133W) associated with a loss in cell force production, in vivo muscle weakness, and distal arthrogryposis. Upon addition of calcium, we notably observed less intensified changes, compared with controls, (i) in the second (1/19 nm(-1)), sixth (1/5.9 nm(-1)), and seventh (1/5.1 nm(-1)) actin layer lines of cells set at a sarcomere length, allowing an optimal thin-thick filament overlap; and (ii) in the second actin layer line of overstretched cells. Collectively, these results directly prove that during activation, switching of a positive to a neutral charge at position 133 in the protein partially hinders both calcium- and myosin-induced tropomyosin movement over the thin filament, blocking actin conformational changes and consequently decreasing the number of cross-bridges and subsequent force production.

Place, publisher, year, edition, pages
2010. Vol. 107, no 21, 9807-9812 p.
Keyword [en]
actin, cross-bridge, single-muscle fiber, X-ray diffraction
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-136199DOI: 10.1073/pnas.1001733107ISI: 000278054700060PubMedID: 20457903OAI: oai:DiVA.org:uu-136199DiVA: diva2:376445
Available from: 2010-12-10 Created: 2010-12-10 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Ochala, JulienLarsson, Lars

Search in DiVA

By author/editor
Ochala, JulienLarsson, Lars
By organisation
Clinical Neurophysiology
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 407 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf