uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pancreatic islets of bank vole show signs of dysfunction after prolonged exposure to high glucose concentrations in vitro
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
2010 (English)In: Journal of Endocrinology, ISSN 0022-0795, E-ISSN 1479-6805, Vol. 206, no 1, 47-54 p.Article in journal (Refereed) Published
Abstract [en]

Bank voles develop glucose intolerance/diabetes mellitus when kept in captivity. We have characterized beta-cell function of glucose intolerant/diabetic animals, and found that this animal model has features of both human type 1 and type 2 diabetes. The aim of this study was to study the functional alterations of islets isolated from glucose tolerant bank voles after a prolonged exposure to various glucose concentrations in vitro. For this purpose, pancreatic islets from normal (glucose tolerant) male and female bank voles were cultured at different glucose concentrations (5.6, 11.1 (control), or 28 mM) whereupon islet functions were examined. Overall, islet insulin output was lowered at 5.6 mM glucose, and similar to control, or enhanced after culture in 28 mM glucose. High glucose culture led to decreased insulin contents, but there was no change in islet DNA content and in morphological assessments of cell death, with the latter findings suggesting that the so-called glucotoxicity had not evolved. A slight gender difference was observed in that islets isolated from females exhibited a glucose-regulated (pro) insulin biosynthesis rate and insulin gene expression. In conclusion, we have found that islets isolated from female and male bank voles are affected by glucose concentrations in vitro in that some signs of dysfunction were observed upon high glucose exposure. A minor gender difference was observed suggesting that the islets of the females may more readily adapt to the elevated glucose concentration than islets of the male bank voles. It could be that these in vitro gender differences observed may represent a mechanism underlying the gender difference in diabetes development observed among bank voles. Journal of Endocrinology (2010) 206, 47-54

Place, publisher, year, edition, pages
2010. Vol. 206, no 1, 47-54 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-136265DOI: 10.1677/JOE-10-0074ISI: 000278873600005OAI: oai:DiVA.org:uu-136265DiVA: diva2:376568
Available from: 2010-12-11 Created: 2010-12-11 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Medical Cell Biology
In the same journal
Journal of Endocrinology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 334 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf