uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Faster-Z evolution is predominantly due to genetic drift.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
2010 (English)In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 27, no 3, 661-670 p.Article in journal (Refereed) Published
Abstract [en]

Genes linked to sex chromosomes may show different levels of functional change than autosomal genes due to different evolutionary pressures. We used whole-genome data from zebra finch-chicken orthologs to test for Faster-Z evolution, finding that Z-linked genes evolve up to 50% more rapidly than autosomal genes. We combined these divergence data with information about sex-specific expression patterns in order to determine whether the Faster-Z Effect that we observe was predominantly the result of positive selection of recessive beneficial mutations in the heterogametic sex or primarily due to genetic drift attributable to the lower effective population size of the Z chromosome compared with an autosome. The Faster-Z Effect was no more prevalent for genes expressed predominantly in females; therefore, our data indicate that the largest source of Faster-Z Evolution is the increased levels of genetic drift on the Z chromosome. This is likely a product of sexual selection acting on males, which reduces the effective population size of the Z relative to that of the autosomes. Additionally, this latter result suggests that the relative evolutionary pressures underlying Faster-Z Evolution are different from those in analogous Faster-X Evolution.

Place, publisher, year, edition, pages
2010. Vol. 27, no 3, 661-670 p.
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-136382DOI: 10.1098/rsbl.2008.0732<ISI: 000274786900015PubMedID: 19926635OAI: oai:DiVA.org:uu-136382DiVA: diva2:376714
Available from: 2010-12-13 Created: 2010-12-12 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Molecular Evolution of the Vertebrate Genome
Open this publication in new window or tab >>Molecular Evolution of the Vertebrate Genome
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, I studied molecular evolution of the vertebrate genome, focusing on sex chromosomes, protein coding genes, and genome size variation. The evolutionary history of avian sex chromosomes was analyzed by comparing substitution rate among 12 gametologous gene pairs on the Z and W chromosomes. Divergence estimates were distributed into three discrete clusters, evolutionary strata, implying stepwise cessations of recombination. Stratum 3 and stratum 2 are located the intervals 1-11Mb and 16-53Mb on the chicken Z chromosome, respectively. Stratum 1 was located in the middle of stratum 2, suggesting a chromosomal inversion. Using a molecular clock, the estimated times for cessation of recombination between Z and W are 132–150 (stratum 1), 71–99 (stratum 2), and 47–57 (stratum 3) million years ago.

Higher divergence rate in the Z chromosome than in autosomes (faster-Z) can be explained by positive selections on recessive alleles in hemizygous females, or by stronger genetic drift due to the smaller effective population size of the Z chromosomes. I found there was no difference in the intensity of the faster-Z effect among male-biased, female-biased, and unbiased genes, as might have been expected under a selection model. This result therefore supports the hypothesis that faster-Z is predominantly due to genetic drift.

Next, I analyzed molecular evolution of protein-coding genes in birds. In the comparison of zebra finch, chicken and non-avian outgroups, I found that neutral substitution rate was highest in zebra finch, intermediate in chicken, and lowest in ancestral birds. This difference seems attributable to differences in generation time, ancestral birds being most long-lived. Several functional categories were overrepresented among positively selected genes in avian lineages, such as transporter activity and calcium ion binding. I also found that many genes involved with cognitive processes including vocal learning were positively selected in zebra finch. I also found evidence for Hill-Robertson interference acting against the removal of slightly deleterious mutations at linked loci.

Finally, I studied the impact of recombination on genome size variation. I found that highly recombining regions have a more condensed genome structure, including shorter lengths of intron, intergenic spacer, transposable elements and higher gene density. In chicken and zebra finch I found that recombination rate was positively correlated with deletion bias, estimated by sequence comparisons between individual transposable elements (LINEs) and the corresponding master sequences. These observations indicate that the more compact genome structure in highly recombining region is due to a higher rate of sequence loss. Higher deletion bias in autosomes than in sex chromosomes supports this idea. I also found that sequence loss due to the deletion bias can explain nearly 20% of genome size reduction after the split of birds from other reptiles. In human, the recombination rate was positively correlated with the deletion bias estimated from polymorphic indels. These results support the hypothesis that the recombination drives genome contraction via the mutation process.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 49 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 935
National Category
Biological Sciences Evolutionary Biology Genetics
Identifiers
urn:nbn:se:uu:diva-173400 (URN)978-91-554-8373-9 (ISBN)
Public defence
2012-06-08, ??, ??, 13:35 (English)
Supervisors
Available from: 2012-05-15 Created: 2012-04-23 Last updated: 2012-08-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Ellegren, Hans

Search in DiVA

By author/editor
Ellegren, Hans
By organisation
Evolutionary Biology
In the same journal
Molecular biology and evolution
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 851 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf