uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Linking environmental and demographic data to predict future population viability of a perennial herb
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Ecological Botany.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Ecological Botany.
2010 (English)In: Oecologia, ISSN 0029-8549, E-ISSN 1432-1939, Vol. 163, no 1, 99-109 p.Article in journal (Refereed) Published
Abstract [en]

Recent advances in stochastic demography provide tools to examine the importance of random and periodic variation in vital rates for population dynamics. In this study, we explore with simulations the effect of disturbance regime on population dynamics and viability. We collected 7 years of demographic data in three populations of the perennial herb Primula farinosa, and used these data to examine how variation in vital rates affected population viability parameters (stochastic growth rate, lambda(S)), and how vital rates were related to weather conditions. Elasticity analysis indicated that the stochastic growth rate was very sensitive to changes in regeneration, quantified as the production, survival, and germination of seeds. In one of the study years, all seedlings and mature plants in the demography plots died. This extinction coincided with the driest summer during the study period. Simulations suggested that a future increase in the frequency of high-mortality years due to climate change would result in reduced population growth rate, and an increased importance of survival in the seed bank for population viability. The results illustrate how the limited demographic data typically available for many natural systems can be used in simulation models to assess how environmental change will affect population viability.

Place, publisher, year, edition, pages
2010. Vol. 163, no 1, 99-109 p.
Keyword [en]
Climate change, Disturbance, Drought, Habitat stage, Markov chains
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-136601DOI: 10.1007/s00442-009-1552-1ISI: 000276615100010OAI: oai:DiVA.org:uu-136601DiVA: diva2:377196
Available from: 2010-12-13 Created: 2010-12-13 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Toräng, PerÅgren, Jon

Search in DiVA

By author/editor
Toräng, PerÅgren, Jon
By organisation
Ecological Botany
In the same journal
Oecologia
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 905 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf