uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spectroscopy of neutron-rich Dy-168,Dy-170: Yrast band evolution close to the NpNn valence maximum
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
Show others and affiliations
2010 (English)In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490X, Vol. 81, no 3, 034310- p.Article in journal (Refereed) Published
Abstract [en]

The yrast sequence of the neutron-rich dysprosium isotope Dy-168 has been studied using multinucleon transfer reactions following collisions between a 460-MeV Se-82 beam and an Er-170 target. The reaction products were identified using the PRISMA magnetic spectrometer and the gamma rays detected using the CLARA HPGe-detector array. The 2(+) and 4(+) members of the previously measured ground-state rotational band of Dy-168 have been confirmed and the yrast band extended up to 10(+). A tentative candidate for the 4(+) -> 2(+) transition in Dy-170 was also identified. The data on these nuclei and on the lighter even-even dysprosium isotopes are interpreted in terms of total Routhian surface calculations and the evolution of collectivity in the vicinity of the proton-neutron valence product maximum is discussed.

Place, publisher, year, edition, pages
2010. Vol. 81, no 3, 034310- p.
National Category
Subatomic Physics
Identifiers
URN: urn:nbn:se:uu:diva-136596DOI: 10.1103/PhysRevC.81.034310ISI: 000276769400026OAI: oai:DiVA.org:uu-136596DiVA: diva2:377201
Available from: 2010-12-13 Created: 2010-12-13 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Collective Structure of Neutron-Rich Rare-Earth Nuclei and Development of Instrumentation for Gamma-Ray Spectroscopy
Open this publication in new window or tab >>Collective Structure of Neutron-Rich Rare-Earth Nuclei and Development of Instrumentation for Gamma-Ray Spectroscopy
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Neutron-rich rare-earth nuclei are among the most collective nuclei that can be found in nature. In particular, the doubly mid-shell nucleus 170Dy is expected to be the nucleus where the collective structure is maximized. This has implications for the astrophysical r-process, since it has been suggested that the collectivity maximum plays an important role in the abundances of the rare-earth elements that are created in supernova explosions. In this work, the collective structure of the five nuclei 168,170Dy and 167,168,169Ho are studied and different theoretical models are used to interpret the evolution of collectivity around the mid-shell. In order to produce and study even more neutron-rich nuclei in this mass region, new radioactive ion beam facilities will be a valuable tool. These facilities, however, require advanced instruments to study the weak signals of exotic nuclei in a high background environment. Two of these instruments are the γ-ray tracking spectrometer AGATA and the neutron detector array NEDA. For AGATA to work satisfactorily, the interaction position of the gamma rays must be determined with an accuracy of at least five millimetres. The position resolution is measured in this work using a model independent method based on the Doppler correction capabilities of the detector at two different distances between the detector and the source. For NEDA, one of the critical parameters is its ability to discriminate between neutrons and γ rays. By using digital electronics it is possible to employ advanced and efficient algorithms for pulse-shape discrimination. In this work, digital versions of the common analogue methods are shownto give as good, or better, results compared to the ones obtained using analogue electronics. Another method which effectively distinguishes between neutrons and γ rays is based on artificial neural networks. This method is also investigated in this work and is shown to yield even better results.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2011. 122 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 818
Keyword
nuclear structure, collective models, 150 < A < 189, AGATA, HPGe detectors, gamma-ray tracking, NEDA, pulse-shape discrimination, neutrons, neural network
National Category
Subatomic Physics
Research subject
Physics with specialization in Nuclear Physics
Identifiers
urn:nbn:se:uu:diva-149772 (URN)978-91-554-8056-1 (ISBN)
Public defence
2011-05-20, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2011-04-29 Created: 2011-03-22 Last updated: 2011-05-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Physics and Astronomy
In the same journal
Physical Review C. Nuclear Physics
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 390 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf