uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cerebrolysin treatment attenuates heat shock protein overexpression in the brain following heat stress: An experimental study using immunohistochemistry at light and electron microscopy in the rat
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
2010 (English)In: Annals of the New York Academy of Sciences, ISSN 0077-8923, E-ISSN 1749-6632, Vol. 1199, 138-148 p.Article in journal (Refereed) Published
Abstract [en]

The possibility that overexpression of heat shock proteins (HSPs) in the CNS represents a neurodestructive signal following hyperthermia was examined in a rat model using a potent neuroprotective drug, Cerebrolysin (Ebewe Pharma, Austria). Rats subjected to four hours of heat stress in a biological oxygen demand incubator at 38 degrees C developed profound hyperthermia (41.23 +/- 0.14 degrees C) and overexpressed HSP 72 kD in several brain regions: cerebral cortex, hippocampus, cerebellum, thalamus, hypothalamus, brain stem, and spinal cord compared to controls. This HSP overexpression closely correlated with the leakage of blood-brain barrier permeability and vasogenic edema formation in these brain areas. HSP positive cells are largely confined in the edematous brain regions showing Evans blue leakage. Pretreatment with Cerebrolysin (5 mL/kg, i.v.) 30 minutes before heat stress markedly attenuated hyperthermia (39.48 +/- 0.23 degrees C, P < 0.01) and the induction of HSP to all the brain regions examined. Leakage of Evans blue albumin and increase in brain water content in these brain areas are also markedly reduced with Cerebrolysin pretreatment. These results are the first to show that Cerebrolysin, if administered before heat stress, attenuates hyperthermia induced stress reaction and HSP 72 kD induction. Taken together, these novel observations suggest that upregulation of HSP 72 kD in brain represents neurodestructive signals and a reduction in cellular stress mechanisms leading to decline in HSP expression is neuroprotective in nature.

Place, publisher, year, edition, pages
2010. Vol. 1199, 138-148 p.
Keyword [en]
heat stress, Cerebrolysin, heat shock proteins (HSP 72 kD), blood-brain barrier, brain edema, brain pathology
National Category
Anesthesiology and Intensive Care
Identifiers
URN: urn:nbn:se:uu:diva-136482DOI: 10.1111/j.1749-6632.2009.05330.xISI: 000282838900016OAI: oai:DiVA.org:uu-136482DiVA: diva2:377561
Available from: 2010-12-14 Created: 2010-12-13 Last updated: 2012-03-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sharma, Hari Shanker

Search in DiVA

By author/editor
Sharma, Hari Shanker
By organisation
Anaesthesiology and Intensive Care
In the same journal
Annals of the New York Academy of Sciences
Anesthesiology and Intensive Care

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 401 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf