uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt159",{id:"formSmash:upper:j_idt159",widgetVar:"widget_formSmash_upper_j_idt159",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt160_j_idt163",{id:"formSmash:upper:j_idt160:j_idt163",widgetVar:"widget_formSmash_upper_j_idt160_j_idt163",target:"formSmash:upper:j_idt160:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Schrodinger equations with critical nonlinearity, singular potential and a ground statePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2010 (English)In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 249, no 2, p. 240-252Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2010. Vol. 249, no 2, p. 240-252
##### Keyword [en]

Nonlinear Schrodinger equations, Generalized ground state, Hardy potential, Criticality theory, Sign-changing solutions, Linking geometry, Minimax, Critical points
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-135555DOI: 10.1016/j.jde.2010.04.004ISI: 000278476200002OAI: oai:DiVA.org:uu-135555DiVA, id: diva2:377627
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt456",{id:"formSmash:j_idt456",widgetVar:"widget_formSmash_j_idt456",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt462",{id:"formSmash:j_idt462",widgetVar:"widget_formSmash_j_idt462",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt468",{id:"formSmash:j_idt468",widgetVar:"widget_formSmash_j_idt468",multiple:true});
Available from: 2010-12-14 Created: 2010-12-07 Last updated: 2017-12-11Bibliographically approved

We study semilinear elliptic equations in a generally unbounded domain Omega subset of R-N when the pertinent quadratic form is nonnegative and the potential is generally singular, typically a homogeneous function of degree -2. We prove solvability results based on the asymptotic behavior of the potential with respect to unbounded translations and dilations, while the nonlinearity is a perturbation of a self-similar, possibly oscillating, term f(infinity) of critical growth satisfying f(infinity)(lambda(j)s)= lambda N+2/N-2 f(infinity)(s), j is an element of Z, s is an element of R. This paper focuses on two qualitatively different cases of this problem, one when the quadratic form has a generalized ground state and another where the presence of potential does not change the energy space. In the latter case we allow nonlinearities with oscillatory critical growth. An important example of such quadratic form is the one on RN with the radial Hardy potential -mu vertical bar x vertical bar(-2) with mu = mu(*) in the first case, mu < mu(*) in the second case, where mu(*) = (N-2)(2)/4 is the largest constant for which the energy form remains nonnegative.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1452",{id:"formSmash:j_idt1452",widgetVar:"widget_formSmash_j_idt1452",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1505",{id:"formSmash:lower:j_idt1505",widgetVar:"widget_formSmash_lower_j_idt1505",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1506_j_idt1508",{id:"formSmash:lower:j_idt1506:j_idt1508",widgetVar:"widget_formSmash_lower_j_idt1506_j_idt1508",target:"formSmash:lower:j_idt1506:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});