uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Genotype-Temperature Interaction in the Regulation of Development, Growth, and Morphometrics in Wild-Type, and Growth-Hormone Transgenic Coho Salmon
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Animal Ecology.
2010 (English)In: PloS one, ISSN 1932-6203, Vol. 5, no 4, e9980- p.Article in journal (Refereed) Published
Abstract [en]

Background: The neuroendocrine system is an important modulator of phenotype, directing cellular genetic responses to external cues such as temperature. Behavioural and physiological processes in poikilothermic organisms (e. g. most fishes), are particularly influenced by surrounding temperatures. Methodology/Principal Findings: By comparing the development and growth of two genotypes of coho salmon (wild-type and transgenic with greatly enhanced growth hormone production) at six different temperatures, ranging between 8 degrees and 18 degrees C, we observed a genotype-temperature interaction and possible trend in directed neuroendocrine selection. Differences in growth patterns of the two genotypes were compared by using mathematical models, and morphometric analyses of juvenile salmon were performed to detect differences in body shape. The maximum hatching and alevin survival rates of both genotypes occurred at 12 degrees C. At lower temperatures, eggs containing embryos with enhanced GH production hatched after a shorter incubation period than wild-type eggs, but this difference was not apparent at and above 16 degrees C. GH transgenesis led to lower body weights at the time when the yolk sack was completely absorbed compared to the wild genotype. The growth of juvenile GH-enhanced salmon was to a greater extent stimulated by higher temperatures than the growth of the wild-type. Increased GH production significantly influenced the shape of the salmon growth curves. Conclusions: Growth hormone overexpression by transgenesis is able to stimulate the growth of coho salmon over a wide range of temperatures. Temperature was found to affect growth rate, survival, and body morphology between GH transgenic and wild genotype coho salmon, and differential responses to temperature observed between the genotypes suggests they would experience different selective forces should they ever enter natural ecosystems. Thus, GH transgenic fish would be expected to differentially respond and adapt to shifts in environmental conditions compared with wild type, influencing their ability to survive and interact in ecosystems. Understanding these relationships would assist environmental risk assessments evaluating potential ecological effects.

Place, publisher, year, edition, pages
2010. Vol. 5, no 4, e9980- p.
National Category
Biological Sciences
URN: urn:nbn:se:uu:diva-137006DOI: 10.1371/journal.pone.0009980ISI: 000276418200051OAI: oai:DiVA.org:uu-137006DiVA: diva2:377773
Available from: 2010-12-14 Created: 2010-12-14 Last updated: 2016-04-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Björklund, Mats
By organisation
Animal Ecology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 182 hits
ReferencesLink to record
Permanent link

Direct link