uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Photoinduced electron transfer in ruthenium(II) trisbipyridine complexes connected to a naphthalenebisimide via an oligo(phenyleneethynylene) spacer
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
Show others and affiliations
2009 (English)In: New Journal of Chemistry, ISSN 1144-0546, E-ISSN 1369-9261, Vol. 33, no 2, 408-416 p.Article in journal (Refereed) Published
Abstract [en]

The preparation and the characterization of three new dyads composed of a ruthenium trisbipyridine complex linked to a naphthalene bisimide electron acceptor via a phenyleneethynylene spacer of different length (one or two units) are reported. The dyads also differ by the anchoring position of the spacer on the bipyridine, which is appended either at the 4-position or the 5-position. Cyclic voltammetry and the UV-Vis absorption spectroscopy suggested that the spacer linked at the 5-position ensures a longer pi-conjugation length but the electron transfer rates indicate a lower electronic coupling, than in 4-position. Photoinduced emission yields indicate a significant quenching of the MLCT excited-state of the ruthenium complex in these dyads. Except for the dyad linked in 5 position with one phenyleneethynylene unit, the transient absorption spectroscopy of all the other dyads evidences that the MLCT excited-state decays almost exclusively by electron transfer to form the charge-separated state Ru-III-NBI-. This state could not be observed, presumably because the subsequent recombination to the ground state was much faster than its formation. In the dyad linked in 5 position with only one phenyleneethynylene unit, at room temperature, the (MLCT)-M-3* state is in equilibrium with the (NBI)-N-3* state, and it also decays via electron transfer. The notable feature of these dyads is first the occurrence of a relatively long-range electron transfer reaction via a bis(phenylethynylene) linking unit anchored at the 5 position. Secondly, we show within these series of compounds that subtle variations in the structure of the dyads (length of the spacer and anchoring position on bipy) have a strong impact on the rates and in the mechanism of decay of the (MLCT)-M-3* state. The photophysical properties of the dyads can be explained in terms of energy proximity of different excited states and magnitude of the electronic coupling according to the anchoring position.

Place, publisher, year, edition, pages
2009. Vol. 33, no 2, 408-416 p.
National Category
Chemical Sciences
URN: urn:nbn:se:uu:diva-137337DOI: 10.1039/b810856kISI: 000263113200019OAI: oai:DiVA.org:uu-137337DiVA: diva2:378157
Available from: 2010-12-15 Created: 2010-12-15 Last updated: 2010-12-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Photochemistry and Molecular Science
In the same journal
New Journal of Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 184 hits
ReferencesLink to record
Permanent link

Direct link