uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Advances in chromogenic materials and devices
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
Show others and affiliations
2010 (English)In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 518, no 11, 3046-3053 p.Article in journal (Refereed) Published
Abstract [en]

Chromogenic materials allow the transmittance of visible light and solar energy to be varied under the action of an external stimulus This paper first discusses buildings related energy savings that can be accomplished by chromogenic technologies, and their beneficial effects on comfort issues We then summarize recent work on thermochromic VO2-based thin films with particular attention to multi-layers of VO2 and TiO2 and to new VO2 Mg films for which the doping gives significantly lowered absorption of visible light The final part covers electrochromic materials and devices with foci on coloration efficiency and on durability issues for foil-type constructions based on films of WO3 and NiO.

Place, publisher, year, edition, pages
2010. Vol. 518, no 11, 3046-3053 p.
Keyword [en]
Chromogenic material, Electrochromism, Thermochromism, Vanadium dioxide, Tungsten oxide, Nickel oxide, Optical properties, Energy efficiency
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-137456DOI: 10.1016/j.tsf.2009.08.058ISI: 000276440700031OAI: oai:DiVA.org:uu-137456DiVA: diva2:378498
Available from: 2010-12-15 Created: 2010-12-15 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Granqvist, Claes-GöranGreen, SaraNiklasson, Gunnar A.Georén, P.

Search in DiVA

By author/editor
Granqvist, Claes-GöranGreen, SaraNiklasson, Gunnar A.Georén, P.
By organisation
Solid State Physics
In the same journal
Thin Solid Films
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 832 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf