uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Origin of ferromagnetism in molybdenum dioxide from ab initio calculations
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2010 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 81, no 1, 012402- p.Article in journal (Refereed) Published
Abstract [en]

We have performed spin-polarized calculations of the unexpected ferromagnetism in ultrathin films of molybdenum dioxide (MoO2) within the framework of density-functional theory. It is found that the ideal bulk MoO2 is metallic and nonmagnetic. Bulk MoO2 with Mo vacancy, O vacancy, Mo interstitial, or O interstitial remains to be nonmagnetic. Using slab calculation, we observed ferromagnetism in both oxygen-rich and -poor MoO2 (100) surfaces with average surface magnetic moment 1.53 and 0.69(mu B) per surface Mo atom, respectively. The partial density of states of surface Mo atom at the Fermi level (E-F) is much larger than that of the Mo atom in the center of the slab and in bulk MoO2, which indicates that ferromagnetism in surface (100) is due to Stoner instability. Enrichment of oxygen at the surface is found to be more favorable for ferromagnetism in MoO2 (100). The 2p states of surface oxygen atoms are significantly hybridized with the 4d states of Mo atoms and are appreciably spin polarized.

Place, publisher, year, edition, pages
2010. Vol. 81, no 1, 012402- p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-137391DOI: 10.1103/PhysRevB.81.012402ISI: 000274001800010OAI: oai:DiVA.org:uu-137391DiVA: diva2:378805
Available from: 2010-12-16 Created: 2010-12-15 Last updated: 2012-03-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ahuja, Rajeev

Search in DiVA

By author/editor
Ahuja, Rajeev
By organisation
Materials Theory
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 344 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf