uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Vein calcite in Cretaceous carbonate reservoirs of Abu Dhabi: Record of fluid flow
Department of Petroleum Geosciences, The Petroleum Institute, Abu Dhabi, United Arab Emirates.
Department of Petroleum Geosciences, The Petroleum Institute, Abu Dhabi, United Arab Emira.
Schlumberger Oilfield Middle East and Asia, Abu Dhabi, United Arab Emirates.
2010 (English)In: Journal of Geochemical Exploration, ISSN 0375-6742, E-ISSN 1879-1689, Vol. 106, no 1-3, 156-170 p.Article in journal (Refereed) Published
Abstract [en]

Petrographic, geochemical analyses (major, trace and rare-earth elements and C, O- and Sr-isotopes), and fluid-inclusion microthermometry study of vein calcites in primarily Cretaceous reservoir carbonate rocks in oilfields from Abu Dhabi, UAE, helped to unravel the formation conditions and origin of diagenetic fluids.

The vein calcites have diverse crystal shapes (equant blocky, bladed and fibrous) and sizes (up to 3 cm across) and display complex cross-cutting relationships. These calcites display a wide range of stable carbon (δ13CV-PDB = − 11.1‰ to + 9.6‰) and oxygen (δ18OV-PDB = − 12.7‰ to − 2.3‰) isotopic compositions, indicating formation under diverse geological conditions. The oxygen isotopic composition suggests that the precipitation of vein calcites occurred at temperatures of ca. 30–100 °C assuming that the fluids had δ18OV-SMOW values of marine pore waters which evolved to basinal brines (i.e. − 1.2‰ and + 2‰, respectively). These inferred temperatures corroborate the fluid-inclusion microthermometry, which revealed a predominantly single, whole liquid phase that suggests entrapment temperature less than ca. 50 °C. A few two-phase fluid inclusions in equant and bladed calcite indicate precipitation at ca. 68–100 °C and salinity of ca. 3.9–10.1 wt.% equivalent NaCl).

The carbon isotopic signatures suggest derivation of dissolved carbon from the host marine carbonates and, less commonly, from the degradation of organic matter by methanogenic and sulfate-reducing bacteria. The diverse sources of carbon coupled with the inferred wide range of precipitation temperatures presumably account for the lack of correlation between the carbon and oxygen isotopes. The derivation of dissolved carbon mainly from the host rocks is in good agreement with the marine Sr isotopic ratios of these calcites (87Sr/86Sr = 0.70744 to 0.70766). Rare-earth element patterns suggest significant fluid interaction with upper continental crustal rocks as evidenced by negative Eu anomalies and LREE-enriched patterns.

Place, publisher, year, edition, pages
2010. Vol. 106, no 1-3, 156-170 p.
Keyword [en]
Vein calcite, Cretaceous, UAE, Carbonate reservoirs, Fluid flow; Geochemistry
National Category
Natural Sciences
Research subject
Earth Science with specialization in Mineral Chemistry, Petrology and Tectonics
Identifiers
URN: urn:nbn:se:uu:diva-139194DOI: 10.1016/j.gexplo.2010.03.002OAI: oai:DiVA.org:uu-139194DiVA: diva2:380706
Available from: 2010-12-22 Created: 2010-12-22 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Morad, S.

Search in DiVA

By author/editor
Morad, S.
In the same journal
Journal of Geochemical Exploration
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 389 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf