uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Reaction of a Phospholipid Monolayer with Gas-Phase Ozone at the Air-Water Interface: Measurement of Surface Excess and Surface Pressure in Real Time
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
Show others and affiliations
2010 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 22, 17295-17303 p.Article in journal (Refereed) Published
Abstract [en]

The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoy1-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known shout the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface. suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of H-1-POPC on D2O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air water interface leading to the formation of OH radicals. the highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation or oxidized lipids with shorter alkyl tails.

Place, publisher, year, edition, pages
2010. Vol. 26, no 22, 17295-17303 p.
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-140034DOI: 10.1021/la1022714ISI: 000283837800090OAI: oai:DiVA.org:uu-140034DiVA: diva2:382844
Available from: 2011-01-03 Created: 2011-01-03 Last updated: 2012-03-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rennie, Adrian R.
By organisation
Department of Physics and Astronomy
In the same journal
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 196 hits
ReferencesLink to record
Permanent link

Direct link