uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Evolution of elongation factor G and the origins of mitochondrial and chloroplast forms
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organism Biology, Systematic Biology. (SLBaldauf)
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organism Biology, Systematic Biology. (Systematisk biologi)
2011 (English)In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 28, no 3, 1281-1292 p.Article in journal (Refereed) Published
Abstract [en]

Protein synthesis elongation factor G (EF-G) is an essential protein with central roles in both the elongation and ribosome recycling phases of protein synthesis. Although EF-G evolution is predicted to be conservative, recent reports suggest otherwise. We have characterized EF-G in terms of its molecular phylogeny, genomic context and patterns of amino acid substitution. We find that most bacteria carry a single "canonical" EF-G, which is phylogenetically conservative and encoded in an str operon. However, we also find a number of EF-G paralogs. These include a pair of EF-Gs that are mostly found together and in an eclectic subset of bacteria, specifically delta-proteobacteria, spirochaetes and planctomycetes (the "spd" bacteria). These spdEFGs have also given rise to the mitochondrial factors mtEFG1 and mtEFG2, which probably arrived in eukaryotes before the eukaryotic last common ancestor. Meanwhile, chloroplasts apparently use an α-proteobacterial derived EF-G, rather than the expected cyanobacterial form. The long-term co-maintenance of the spd/mtEFGs may be related to their subfunctionalization for translocation and ribosome recycling. Consistent with this, patterns of sequence conservation and site-specific evolutionary rate shifts suggest that the faster evolving spd/mtEFG2 has lost translocation function, but, surprisingly, the protein also shows little conservation of sites related to recycling activity. On the other hand, spd/mtEFG1, although more slowly evolving, shows signs of substantial remodeling. This is particularly extensive in the GTPase domain, including a highly conserved three amino acid insertion in switch I. We suggest that sub-functionalization of the spd/mtEFGs is not a simple case of specialization for subsets of original activities. Rather the duplication allows the release of one paralog from the selective constraints imposed by dual functionality thus allowing it to become more highly specialized. Thus the potential for fine-tuning afforded by subfunctionalization may explain the maintenance of EF-G paralogs.

Place, publisher, year, edition, pages
2011. Vol. 28, no 3, 1281-1292 p.
Keyword [en]
EF-G, Elongation factor G, organelle, xenology, paralogy, ribosome, translation
National Category
Biological Systematics
Research subject
Biology with specialization in Molecular Evolution
URN: urn:nbn:se:uu:diva-141688DOI: 10.1093/molbev/msq316ISI: 000287745200014PubMedID: 21097998OAI: oai:DiVA.org:uu-141688DiVA: diva2:386123
Swedish Research Council, 70495101
Available from: 2011-01-12 Created: 2011-01-12 Last updated: 2011-03-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Baldauf, Sandra
By organisation
Systematic Biology
In the same journal
Molecular biology and evolution
Biological Systematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 574 hits
ReferencesLink to record
Permanent link

Direct link