uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Microscopic mechanisms for improper ferroelectricity in multiferroic perovskites: a theoretical review
Show others and affiliations
2008 (English)In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 20, no 43, 434208- p.Article, review/survey (Refereed) Published
Abstract [en]

Two microscopic mechanisms helping us to understand the multiferroic behavior of distorted rare-earth manganites are here briefly reviewed. The original work was carried out by means of Hamiltonian modeling and first-principles density functional simulations. Our first topic concerns the link between the Dzyaloshinskii-Moriya interaction and ferroelectricity in incommensurate magnets. We argue that the Dzyaloshinskii-Moriya interaction may play a key role since (i) it induces ferroelectric displacements of oxygen atoms and (ii) it favors the stabilization of a helical magnetic structure at low temperatures. Our second topic concerns the prediction, based on Landau theory, that the symmetry of the zigzag spin chains in the AFM-E (E-type antiferromagnetic) orthorhombic manganites (such as HoMnO3) allows a finite polarization along the c axis. The microscopic mechanism at the basis of ferroelectricity is interpreted through a gain in band energy of the e(g) electrons within the orbitally degenerate double-exchange model. Related Monte Carlo simulations have confirmed that the polarization can be much higher than what is observed in spiral magnetic phases. Density functional calculations performed on orthorhombic HoMnO3 quantitatively confirm a magnetically induced ferroelectric polarization up to similar to 6 mu C cm(-2), the largest reported so far for improper magnetic ferroelectrics. We find in HoMnO3, in addition to the conventional displacement mechanism, a sizable contribution arising from the purely electronic effect of orbital polarization. The relatively large ferroelectric polarization, present even with centrosymmetric atomic positions, is a clear sign of a magnetism-induced electronic mechanism at play, which is also confirmed by the large displacements of the Wannier function centers with respect to the corresponding ions in AFM-E HoMnO3. The final polarization is shown to be the result of competing effects, as shown by the opposite signs of the eg and t(2g) contributions to the ferroelectric polarization.

Place, publisher, year, edition, pages
2008. Vol. 20, no 43, 434208- p.
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-141957DOI: 10.1088/0953-8984/20/43/434208ISI: 000259922600009OAI: oai:DiVA.org:uu-141957DiVA: diva2:386705
Available from: 2011-01-13 Created: 2011-01-13 Last updated: 2012-03-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sanyal, Biplab
By organisation
Department of Physics
In the same journal
Journal of Physics: Condensed Matter
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 127 hits
ReferencesLink to record
Permanent link

Direct link