uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Two conformational forms of target-bound iC3b that distinctively bind complement receptors 1 and 2 and two specific monoclonal antibodies
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
2011 (English)In: Upsala Journal of Medical Sciences, ISSN 0300-9734, Vol. 116, no 1, 26-33 p.Article in journal (Refereed) Published
Abstract [en]

Introduction. The complement system is an essential part of the immune system of vertebrates. The central event of the complement activation cascade is the sequential proteolytic activation of C3, which is associated with profound alterations in the molecule's structure and conformation and is responsible for triggering most of the biological effects of complement. Material and methods. Here, we have studied the conformation of C3 fragments deposited onto an IgG-coated surface from human serum during complement activation, using a set of unique monoclonal antibodies (mAbs) that are all specific for the C3dg portion of bound iC3b. Results. We were able to identify two conformational forms of target-bound iC3b: the first recognized by mAb 7D18.1, and the second by mAb 7D323.1. The first species of iC3b bound recombinant complement receptor 1 (CR1), while the second bound CR2. Since CR1 and CR2 are expressed by different subsets of leukocytes, this difference in receptor-binding capacity implies that there is a biological difference between the two forms of surface-bound iC3b. Conclusion. We propose that mAbs 7D18.1 and 7D323.1 can act as surrogate markers for CR1 and CR2, respectively, and that they may be useful tools for studying the immune complexes that are generated in various autoimmune diseases.

Place, publisher, year, edition, pages
2011. Vol. 116, no 1, 26-33 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-142002DOI: 10.3109/03009734.2010.528465ISI: 000287312100004PubMedID: 21070093OAI: oai:DiVA.org:uu-142002DiVA: diva2:386740
Available from: 2011-01-13 Created: 2011-01-13 Last updated: 2011-03-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Clinical Immunology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 338 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf