uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Ion Physics.
Show others and affiliations
2007 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 101, no 8, 084311- p.Article in journal (Refereed) Published
Abstract [en]

Ion beam synthesis using high-fluence carbon ion implantation in silicon in combination with subsequent or in situ thermal annealing has been shown to be able to form nanocrystalline cubic SiC (3C-SiC) layers in silicon. In this study, a silicon carbide layer was synthesized by 40-keV C 12 + implantation of a p -type (100) Si wafer at a fluence of 6.5× 1017 ions cm2 at an elevated temperature. The existence of the implanted carbon in Si substrate was investigated by time-of-flight energy elastic recoil detection analysis. The SiC layer was subsequently irradiated by 10-30 MeV I 127 ions to a very low fluence of 1012 ions cm2 at temperatures from 80 to 800 °C to study the effect on the crystallization of the SiC layer. Infrared spectroscopy and Raman scattering measurement were used to monitor the formation of SiC and detailed information about the SiC film properties was obtained by analyzing the peak shape of the Si-C stretching mode absorption. The change in crystallinity of the synthesized layer was probed by glancing incidence x-ray diffraction measurement and transmission electron microscopy was also used to confirm the results and to model the crystallization process. The results from all these measurements showed in a coherent way that the synthesized structure was a polycrystalline layer with nanometer sized SiC crystals buried in a-Si matrix. The crystallinity of the SiC layer was enhanced by the low-fluence swift heavy ion bombardment and also favored by higher energy, higher fluence, and higher substrate temperature. It is suggested that electronic stopping plays a dominant role in the enhancement.

Place, publisher, year, edition, pages
2007. Vol. 101, no 8, 084311- p.
Keyword [en]
silicon compounds, wide band gap semiconductors, semiconductor thin films, crystallisation, ion beam effects, ion implantation, infrared spectra, Raman spectra, crystal structure, X-ray diffraction, transmission electron microscopy, nanostructured materials, electron energy loss spectra, Rutherford backscattering, annealing
National Category
Engineering and Technology
URN: urn:nbn:se:uu:diva-11000DOI: 10.1063/1.2720090ISI: 000246072200135OAI: oai:DiVA.org:uu-11000DiVA: diva2:38768
Available from: 2008-09-30 Created: 2008-09-30 Last updated: 2011-04-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hallén, AndersLu, JunOttosson, MikaelJensen, JensPossnert, Göran
By organisation
Ion PhysicsDepartment of Engineering SciencesDepartment of Materials Chemistry
In the same journal
Journal of Applied Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 167 hits
ReferencesLink to record
Permanent link

Direct link