uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Sensornet checkpointing: “Enabling repeatability in test-beds and realism in simulators.”
Show others and affiliations
2009 (English)In: In Proceedings of the 6th European Conference on Wireless Sensor Networks, EWSN 2009, Cork, Ireland, February 2009, 2009Conference paper (Refereed)
Place, publisher, year, edition, pages
URN: urn:nbn:se:uu:diva-142758OAI: oai:DiVA.org:uu-142758DiVA: diva2:388101
6th European Conference on Wireless Sensor Networks, EWSN 2009, Cork, Ireland, February 2009
Available from: 2011-01-17 Created: 2011-01-17 Last updated: 2013-12-02
In thesis
1. Improving Low-Power Wireless Protocols with Timing-Accurate Simulation
Open this publication in new window or tab >>Improving Low-Power Wireless Protocols with Timing-Accurate Simulation
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Low-power wireless technology enables numerous applications in areas from environmental monitoring and smart cities, to healthcare and recycling. But resource-constraints and the distributed nature of applications make low-power wireless networks difficult to develop and understand, resulting in increased development time, poor performance, software bugs, or even network failures. Network simulators offer full non-intrusive visibility and control, and are indispensible tools during development. But simulators do not always adequately represent the real world, limiting their applicability.

In this thesis I argue that high simulation timing accuracy is important when developing high-performance low-power wireless protocols. Unlike in generic wireless network simulation, timing becomes important since low-power wireless networks use extremely timing-sensitive software techniques such as radio duty-cycling. I develop the simulation environment Cooja that can simulate low-power wireless networks with high timing accuracy.

Using timing-accurate simulation, I design and develop a set of new low-power wireless protocols that improve on throughput, latency, and energy-efficiency. The problems that motivate these protocols were revealed by timing-accurate simulation. Timing-accurate software execution exposed performance bottlenecks that I address with a new communication primitive called Conditional Immediate Transmission (CIT). I show that CIT can improve on throughput in bulk transfer scenarios, and lower latency in many-to-one convergecast networks. Timing-accurate communication exposed that the hidden terminal problem is aggravated in duty-cycled networks that experience traffic bursts. I propose the Strawman mechanism that makes a radio duty-cycled network robust against traffic bursts by efficiently coping with hidden terminals.

The Cooja simulation environment is available for use by others and is the default simulator in the Contiki operating system since 2006.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2011. 73 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 866
Low-Power Wireless Protocols, Wireless Sensor Networks, Contiki, Cooja, Simulation
National Category
Computer Science Communication Systems
Research subject
Computer Science with specialization in Computer Communication
urn:nbn:se:uu:diva-159886 (URN)978-91-554-8182-7 (ISBN)
Public defence
2011-11-24, Auditorium Minus, Museum Gustavianum, Akademigatan 3, Uppsala, 13:45 (English)
Available from: 2011-11-02 Created: 2011-10-11 Last updated: 2014-07-22Bibliographically approved

Open Access in DiVA

No full text

Other links


Search in DiVA

By author/editor
Voigt, Thiemo

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 144 hits
ReferencesLink to record
Permanent link

Direct link