uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ensemble modelling of nitrogen fluxes: Data fusion for a Swedish meso-scale catchment
Institute for Landscape Ecology and Resources Management, Justus-Liebig-University Giessen, Germany.
CSIRO Land and Water, Canberra, Australia.
University of Zurich, Zurich, Switzerland.
Delft University of Technology, Delft, Netherlands.
Show others and affiliations
2010 (English)In: Hydrology and Earth System Sciences, Vol. 14, no 12, 2383-2397 p.Article in journal (Refereed) Published
Abstract [en]

Model predictions of biogeochemical fluxes at the landscape scale are highly uncertain, both with respect to stochastic (parameter) and structural uncertainty. In this study 5 different models (LASCAM, LASCAM-S, a selfdeveloped tool, SWAT and HBV-N-D) designed to simulate hydrological fluxes as well as mobilisation and transport of one or several nitrogen species were applied to the mesoscale River Fyris catchment in mid-eastern Sweden. Hydrological calibration against 5 years of recorded daily discharge at two stations gave highly variable results with Nash-Sutcliffe Efficiency (NSE) ranging between 0.48 and 0.83. Using the calibrated hydrological parameter sets, the parameter uncertainty linked to the nitrogen parameters was explored in order to cover the range of possible predictions of exported loads for 3 nitrogen species: nitrate (NO3), ammonium (NH4) and total nitrogen (Tot-N). For each model and each nitrogen species, predictions were ranked in two different ways according to the performance indicated by two different goodness-of-fit measures: the coefficient of determination R2 and the root mean square error RMSE. A total of 2160 deterministic Single Model Ensembles (SME) was generated using an increasing number of members (from the 2 best to the 10 best single predictions). Finally the best SME for each model, nitrogen species and discharge station were selected and merged into 330 different Multi-Model Ensembles (MME). The evolution of changes in R2 and RMSE was used as a performance descriptor of the ensemble procedure. In each studied case, numerous ensemble merging schemes were identified which outperformed any of their members. Improvement rates were generally higher when worse members were introduced. The highest improvements were achieved for the nitrogen SMEs compiled with multiple linear regression models with R2 selected members, which resulted in the RMSE decreasing by up to 90%. © Author(s) 2010.

Place, publisher, year, edition, pages
2010. Vol. 14, no 12, 2383-2397 p.
Keyword [en]
biogeochemical cycle, calibration, catchment, data set, energy efficiency, error analysis, flux measurement, landscape, nitrogen compound, numerical model, regression analysis, stochasticity, uncertainty analysis
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:uu:diva-143468DOI: 10.5194/hess-14-2383-2010OAI: oai:DiVA.org:uu-143468DiVA: diva2:390107
Note

Source: Scopus

Available from: 2011-01-20 Created: 2011-01-20 Last updated: 2013-01-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.scopus.com/inward/record.url?eid=2-s2.0-78650633667&partnerID=40&md5=1f175f72a3af74c5183a7e6b901c8bda

Authority records BETA

Seibert, Jan

Search in DiVA

By author/editor
Seibert, Jan
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 362 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf