uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Gravity overturn, extension and basement fault activation
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
1991 (English)In: Journal of Petroleum Geology, Vol. 14, no S1, 117-142 p.Article in journal (Refereed) Published
Abstract [en]

Rayleigh-Taylor instabilities occur when low-density layers of viscous fluids are overlain by denser layers. Gravity overturn of such instabilities leads to the rise of the unstable light (source) fluid as diapirs (e.g. of salt) through the denser (overburden) layers (e.g. of clastic sediments). Lnteral extension or movements of faults in the bottom boundary at any stage during such gravity overturns are expected to have a great effect on the geometry, growth rate and location of onv salt structures.

Two groups of material models, each consisting of three series, were used to study the effect of uniform extension. and the non-uniform extension due to reactivation of pre-existing basement faults. on gravity-driven overturns at different stages. The overburden in a third group model consisted of a stiffer non-Newtonian fluid. All the models were loose& scaled to an early stage of the North Sea. All the diapirs were upbuilt, because all the overburden was in place from the start.

Pre-extension/prefaulting model diapirs are essentially vertical, symmetrical and finger-like with circular planforms and with isotropic lateral spacings predictable by Ramberg theory. When reactivated and deformed by Inter extension. these diapirs become inclined in profile, and develop elliptical planforms elongate in the direction of extension. Diapirs which rise in an tnstable sequence already thinned uniformly are only smaller, closer and slower.

Post faulting model diapirs (in group 2 models) rise as asymmetric walls or rows of fingers, some above the, fault-scarps in the basement. others above the fault blocks.

Synextension model diapirs rise from a thinning source layer; some are inclined and osymmetric in profile; some hove circular planforms, while others are elliptical and elongate in the extension direction. Synfaulting diapirs which form during reactivation of extensional basement, faults. develop as inclined and asymmetric walls overhanging the fault scarps. Finger-like diapirs separated from synfaulting walls occur in rows parallel to the faults, and have elliptical planforms elongate in the extension direction or. if located in local regimes of shallow compression, perpendicular to it,

When the overburden was non-Newtonian with a power law component n=8.1. diapirs of the source surfaced only along extensional faults in the overburden.

The model results are used to comment on recent interpretations of how halokinesis and extension interacted in the North Sea.

Place, publisher, year, edition, pages
1991. Vol. 14, no S1, 117-142 p.
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:uu:diva-11366DOI: 10.1111/j.1747-5457.1991.tb00358.xOAI: oai:DiVA.org:uu-11366DiVA: diva2:39134
Available from: 2007-09-11 Created: 2007-09-11 Last updated: 2013-02-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Koyi, Hemin
By organisation
Solid Earth Geology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 681 hits
ReferencesLink to record
Permanent link

Direct link