uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structure and energetics of Cr(CO)6 and Cr(CO)5
Department of Theoretical Chemistry, Lund University.ORCID iD: 0000-0001-7567-8295
1993 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 98, no 5, 3978-3989 p.Article in journal (Refereed) Published
Abstract [en]

The geometric structure of Cr(CO)6 is optimized at the modified coupled-pair functional (MCPF), single and double excitation coupled-cluster (CCSD), and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD, and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD, and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used here and in a previous study. Calculations using larger basis sets reduce the BSSE, but the total binding energy of Cr(CO)6 is Still Significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. In the largest basis set, the total CO binding energy of Cr(CO)6 is estimated to be 140 kcal/mol at the CCSD(T) level of theory, or about 86% of the experimental value. The remaining discrepancy between the experimental and theoretical value is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular, an additional d function and an f function on each C and 0 are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive set (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.

Place, publisher, year, edition, pages
1993. Vol. 98, no 5, 3978-3989 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-143945DOI: 10.1063/1.464026ISI: A1993KR11100044OAI: oai:DiVA.org:uu-143945DiVA: diva2:394318
Available from: 2011-02-02 Created: 2011-01-25 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Lindh, Roland

Search in DiVA

By author/editor
Lindh, Roland
In the same journal
Journal of Chemical Physics
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 791 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf