uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Research Article Extended ab Initio and Theoretical Thermodynamics Studies of the Bergman Reaction and the Energy Splitting of the Singlet o-, m-, and p-Benzynes
Department of Theoretical Chemistry, Lund University.ORCID iD: 0000-0001-7567-8295
Show others and affiliations
1995 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 117, no 27, 7186-7194 p.Article in journal (Refereed) Published
Abstract [en]

The autoaromatization of (Z)-hex-3-ene-1,5-diyne to the singlet biradical p-benzyne has been reinvestigated by state of the art ab initio methods. Previous CCSD(T)/6-31G(d,p) and CASPT2[0]/ANO[C(5s4p2dlf)/H(3s2p)] calculations estimated the reaction heat at 298 K to be 8-10 and 3.9 +/- 3.2 kcal/mol, respectively. Recent NO- and oxygen-dependent trapping experiments and collision-induced dissociation threshold energy experiments estimate the heat of reaction to be 8.5 +/- 1.0 kcal/mol at 470 K (corrected to 9.5 +/- 1.0 kcal/mol at 298 K) and 8.4 +/- 3.0 kcal/mol at 298 K, respectively. New theoretical estimates at 298 K predict the values at the basis set Limit for the CCSD(T) and CASPT2[gl] methods to be 12.7 +/- 2.0 and 5.4 +/- 2.0 kcal/mol, respectively. The experimentally predicted electronic contribution to the heat of activation is 28.6 kcal/mol. This can be compared with 25.5 and 29.8 kcal/mol from the CASPT2[gl] and the CCSD(T) methods, respectively. The new study has a much larger one-particle basis set for the CCSD(T) method as compared to earlier studies. For the CASPT2 investigation the better suited CASPT2[gl] approximation is utilized. The original CASPT2 method, CASPT2[0], systematically favors open-shell systems relative to closed-shell systems. This was previously corrected empirically. The current study shows that the energy difference between CCSD(T) and CASPT2[gl] at the basis set limit is estimated to be 7 +/- 2 kcal/mol. The study also demonstrates that the estimated heat of reaction is very sensitive to the quality of the basis set. In particular CCSD(T)/6-31G(d,p) approach underestimates the basis set limit of the enthalpy by approximately 5 kcal/mol. Furthermore, the relative energies of the p-, m-, and o-benzynes are computed at the CASPT2[gl] and CCSD(T) levels of theory. These results help to explain the discrepancy between the two methods in the case of the Bergman reaction. The deficiency of the CASPT2 method is mainly attributed to the approximate way in which the dynamic correlation is included by perturbation theory. A similar sized error is attributed to the CCSD(T) method due to the approximate way in which near degeneracy effects are included. This combined CCSD(T) and CASPT2[gl] study indicates that the most recent experimental value of the p-benzyne-o-benzyne energy splitting is overestimated.

Place, publisher, year, edition, pages
1995. Vol. 117, no 27, 7186-7194 p.
National Category
Chemical Sciences
URN: urn:nbn:se:uu:diva-143936DOI: 10.1021/ja00132a019ISI: A1995RJ03500019OAI: oai:DiVA.org:uu-143936DiVA: diva2:394329
Available from: 2011-02-02 Created: 2011-01-25 Last updated: 2015-01-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lindh, Roland
In the same journal
Journal of the American Chemical Society
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 607 hits
ReferencesLink to record
Permanent link

Direct link