uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Molecular integrals by numerical quadrature. I. Radial integration
Department of Theoretical Chemistry, Lund University.ORCID iD: 0000-0001-7567-8295
2001 (English)In: Theoretical Chemistry accounts, ISSN 1432-881X, E-ISSN 1432-2234, Vol. 106, no 3, 178-187 p.Article in journal (Refereed) Published
Abstract [en]

This article presents a numerical quadrature intended primarily for evaluating integrals in quantum chemistry programs based on molecular orbital theory, in particular density functional methods. Typically, many integrals must be computed. They are divided up into different classes, on the basis of the required accuracy and spatial extent. Ideally, each batch should be integrated using the minimal set of integration points that at the same time guarantees the required precision. Currently used quadrature schemes are far from optimal in this sense, and we are now developing new algorithms. They are designed to be flexible; such that given the range of functions to be integrated, and the required precision, the integration is performed as economically as possible with error bounds within specification. A standard approach is to partition space into a see of regions, where each region is integrated using a spherically polar grid. This article presents a radial quadrature which allows error control, uniform error distribution and uniform error reduction with increased number of radial grid points. A relative error less than 10(-14) for all s-type Gaussian integrands with an exponent range of 14 orders of magnitude is achieved with about 200 grid points. Higher angular I quantum numbers, lower precision or narrower exponent ranges require fewer points. The quadrature also allows controlled pruning of the angular grid in the vicinity of the nuclei.

Place, publisher, year, edition, pages
2001. Vol. 106, no 3, 178-187 p.
National Category
Chemical Sciences
URN: urn:nbn:se:uu:diva-143916DOI: 10.1007/s002140100263OAI: oai:DiVA.org:uu-143916DiVA: diva2:394384
Available from: 2011-02-02 Created: 2011-01-25 Last updated: 2015-01-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lindh, Roland
In the same journal
Theoretical Chemistry accounts
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 452 hits
ReferencesLink to record
Permanent link

Direct link